Clinical & Experimental Metastasis

, Volume 26, Issue 3, pp 205–213 | Cite as

A gene expression signature that defines breast cancer metastases

  • Rachel E. EllsworthEmail author
  • Jeff Seebach
  • Lori A. Field
  • Caroline Heckman
  • Jennifer Kane
  • Jeffrey A. Hooke
  • Brad Love
  • Craig D. Shriver
Research Paper


The most important predictor of prognosis in breast cancer is lymph node status, yet little is known about molecular changes associated with lymph node metastasis. Here, gene expression analysis was performed on primary breast (PBT) and corresponding metastatic lymph node (MLN) tumors to identify molecular signatures associated with nodal metastasis. RNA was isolated after laser microdissection from frozen PBT and MLN from 20 patients with positive lymph nodes and hybridized to the microarray chips. Differential expression was determined using Mann–Whitney testing; Bonferroni corrected P values of 0.05 and 0.001 were calculated. Results were validated using TaqMan assays. Fifty-one genes were differentially expressed (< 1 × 10−5, less than twofold differences) between the PBT and paired MLN; 13 with significantly higher expression in the MLN and 38 in the PBT. qRT-PCR validated the differential expression of 40/51 genes. Of the 40 validated genes, NTS and PAX5 were found to have >100-fold higher expression in MLT while COL11A1, KRT14, MMP13, TAC1 and WNT2 had >100-fold higher expression in PBT. Gene expression differences between PBT and MLN suggests that expression of a unique set of genes is required for successful lymph node colonization. Genes expressed at higher levels in PBT are involved in degradation of the extracellular matrix, enabling cells with metastatic potential to disseminate, while genes expressed at higher levels in metastases are involved in transcription, signal transduction and immune response, providing cells with proliferation and survival advantages. These data improve our understanding of the biological processes involved in successful metastatis and provide new targets to arrest tumor cell dissemination and metastatic colonization.


Breast cancer Metastasis Gene expression 



We thank Drs. Darrell Ellsworth and George Iida for helpful and critical review of this manuscript. Supported by the United States Department of Defense (Military Molecular Medicine Initiative MDA W81XWH-05-2-0075). The opinion and assertions contained herein are the private views of the authors and are not to be construed as official or as representing the views of the Department of the Army or the Department of Defense.

Supplementary material

10585_2008_9232_MOESM1_ESM.xls (14.3 mb)
(XLS 14645 kb)


  1. 1.
    American Cancer Society (2007) Cancer facts and figures 2007. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Ellsworth RE, Ellsworth DL, Neatrour DM, Deyarmin B, Lubert SM, Sarachine MJ, Brown P, Hooke JA, Shriver CD (2005) Allelic imbalance in primary breast carcinomas and metastatic tumors of the axillary lymph nodes. Mol Cancer Res 3:71–77. doi: 10.1158/1541-7786.MCR-04-0180 PubMedCrossRefGoogle Scholar
  3. 3.
    Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57:1597–1604PubMedGoogle Scholar
  4. 4.
    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJF, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742. doi: 10.1073/pnas.1331931100 PubMedCrossRefGoogle Scholar
  5. 5.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. doi: 10.1038/nm1469 PubMedCrossRefGoogle Scholar
  6. 6.
    McGuire WL, Clark GM (1992) Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 326:1756–1761PubMedGoogle Scholar
  7. 7.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi: 10.1038/35021093 PubMedCrossRefGoogle Scholar
  8. 8.
    Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54. doi: 10.1038/ng1060 PubMedCrossRefGoogle Scholar
  9. 9.
    Sorlie T, Perou CM, Tibshirania R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi: 10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  10. 10.
    van’t Veer LJ, Dai H, vande Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clincial outcome of breast cancer. Nature 415:530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  11. 11.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458. doi: 10.1038/nrc1098 PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695. doi: 10.1016/j.cell.2006.11.001 PubMedCrossRefGoogle Scholar
  13. 13.
    Newman B, Austin MA, Lee M, King MC (1988) Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci USA 85:3044–3048. doi: 10.1073/pnas.85.9.3044 PubMedCrossRefGoogle Scholar
  14. 14.
    Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49:751–758. doi:10.1002/1097-0142(19820215)49:4<751::AID-CNCR2820490426>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352. doi: 10.1038/nrg2101 PubMedCrossRefGoogle Scholar
  16. 16.
    Vecchi M, Confalonieri S, Nuciforo P, Vigano MA, Capra M, Bianchi M, Nicosia D, Bianchi F, Galimberti V, Viale G, Riccardi A, Campanini R, Daidone MG, Pierotti MA, Pece S, Di Fiore PP (2008) Breast cancer metastses are molecularly distinct from their primary tumors. Oncogene 27:2148–2158. doi: 10.1038/sj.onc.1210858 PubMedCrossRefGoogle Scholar
  17. 17.
    Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98:413–423. doi: 10.1002/cncr.11464 PubMedCrossRefGoogle Scholar
  18. 18.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastgui E, Zlotnick A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56. doi: 10.1038/35065016 PubMedCrossRefGoogle Scholar
  19. 19.
    Vouyovitch CM, Vidal L, Borges S, Raccurt M, Arnould C, Chiesa J, Lobie PE, Lachuer J, Mertani HC (2008) Proteomic analysis of autocrine/paracrine effects of human growth hormone in human mammary carcinoma cells. Adv Exp Med Biol 617:493–500. doi: 10.1007/978-0-387-69080-3_49 PubMedCrossRefGoogle Scholar
  20. 20.
    Lomenick JP, Hubert MA, Handwerger S (2006) Transcription factor FOXF1 regulates growth hormone variant gene expression. Am J Physiol Endocrinol Metab 291:E945–E951. doi: 10.1152/ajpendo.00128.2006 CrossRefGoogle Scholar
  21. 21.
    Seoane J, Le HV, Shen L, Anderson SA, Massagué J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223. doi: 10.1016/S0092-8674(04)00298-3 PubMedCrossRefGoogle Scholar
  22. 22.
    Somai S, Gompel A, Rostene W, Forgez P (2002) Neurotensin counteracts apoptosis in breast cancer cells. Biochem Biophys Res Commun 295:482–488. doi: 10.1016/S0006-291X(02)00703-9 PubMedCrossRefGoogle Scholar
  23. 23.
    Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, Ning C, Fang Z, Wang Y, Zhang L, Cheng J, Zhang W, Hao X (2007) Differentially expressed genes between primary cancer and paired lymph node metastses predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 103:319–329. doi: 10.1007/s10549-006-9385-7 PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki M, Tarin D (2007) Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol 1:172–180. doi: 10.1016/j.molonc.2007.03.005 CrossRefGoogle Scholar
  25. 25.
    Jenssen TK, Hovig E (2005) Gene-expression profiling in breast cancer. Lancet 365:634–635PubMedGoogle Scholar
  26. 26.
    Harrell JC, Dye WW, Harvell DME, Sartorius CA, Horwitz KB (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastses. Clin Exp Metastasis 25:81–88. doi: 10.1007/s10585-007-9105-7 PubMedCrossRefGoogle Scholar
  27. 27.
    Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rachel E. Ellsworth
    • 1
    Email author
  • Jeff Seebach
    • 2
  • Lori A. Field
    • 3
  • Caroline Heckman
    • 3
  • Jennifer Kane
    • 3
  • Jeffrey A. Hooke
    • 2
  • Brad Love
    • 4
  • Craig D. Shriver
    • 2
  1. 1.Clinical Breast Care ProjectHenry M. Jackson Foundation for the Advancement of Military MedicineWindberUSA
  2. 2.Clinical Breast Care ProjectWalter Reed Army Medical CenterWashingtonUSA
  3. 3.Clinical Breast Care ProjectWindber Research InstituteWindberUSA
  4. 4.InvitrogenCarlsbadUSA

Personalised recommendations