Clinical & Experimental Metastasis

, Volume 26, Issue 2, pp 153–159 | Cite as

Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo

  • Sumanta GoswamiEmail author
  • Ulrike Philippar
  • Daqian Sun
  • Antonia Patsialou
  • Jacob Avraham
  • Weigang Wang
  • Francesca Di Modugno
  • Paola Nistico
  • Frank B. Gertler
  • John S. Condeelis
Research Paper


We have studied the gene expression pattern of invasive primary mammary tumor cells using a unique in vivo invasion assay that isolates the invasive tumor cells by chemotaxis. One of the genes upregulated in the invasive tumor cells is Mena, an actin binding protein involved in the regulation of cell motility. There are multiple known splice variants of Mena accounted for by four alternatively included exons, +, ++, +++ and 11a. Using the in vivo invasion assay in rats and mice with mammary tumors we observed that two isoforms of Mena, ++ and +++, are upregulated in the invasive tumor cells and one isoform, 11a, is downregulated. The Mena isoform switching pattern described here may provide a new biomarker for the presence of metastatic cancer cells and for prognosis.


Breast cancer Metastasis Biomarker Mena Splice variant 



The authors wish to acknowledge Andrew Freidman for technical help, Drs Erik Sahai and Jeffrey Segall for their help in discussions. U.P. was supported by the Anna Fuller Molecular Oncology Fund and the Ludwig Center for Molecular Oncology. This work is supported by NIH CA 100324 (SG and JC) and CA113395 (JC), NIH grant # GM58801 and ICBP grant # 1-U54-CA112967 for FBG, Lega Italiana per la Lotta Contro i Tumori and Associazione Italiana per la Ricerca sul Cancro (AIRC) for PN. SG is the recipient of the Young Investigator Award from Breast Cancer Alliance Inc.

Supplementary material

10585_2008_9225_MOESM1_ESM.doc (530 kb)
(DOCX 510 kb)


  1. 1.
    Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695–718. doi: 10.1146/annurev.cellbio.21.122303.120306 PubMedCrossRefGoogle Scholar
  2. 2.
    Wyckoff J, Wang W, Lin EY et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029. doi: 10.1158/0008-5472.CAN-04-1449 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang W, Goswami S, Lapidus K et al (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64(23):8585–8594. doi: 10.1158/0008-5472.CAN-04-1136 PubMedCrossRefGoogle Scholar
  4. 4.
    Wang W, Wyckoff JB, Goswami S et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67(8):3505–3511. doi: 10.1158/0008-5472.CAN-06-3714 PubMedCrossRefGoogle Scholar
  5. 5.
    Goswami S, Wang W, Wyckoff JB, Condeelis JS (2004) Breast cancer cells isolated by chemotaxis from primary tumors show increased survival and resistance to chemotherapy. Cancer Res 64(21):7664–7667. doi: 10.1158/0008-5472.CAN-04-2027 PubMedCrossRefGoogle Scholar
  6. 6.
    Wang W, Mouneimne G, Sidani M et al (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173(3):395–404. doi: 10.1083/jcb.200510115 PubMedCrossRefGoogle Scholar
  7. 7.
    Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87:227–239. doi: 10.1016/S0092-8674(00)81341-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Barzik M, Kotova TI, Higgs HN et al (2005) Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 280(31):28653–28662. doi: 10.1074/jbc.M503957200 PubMedCrossRefGoogle Scholar
  9. 9.
    Bear JE, Svitkina TM, Krause M et al (2002) Antagonism between Ena/VASP Proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521. doi: 10.1016/S0092-8674(02)00731-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim H, Giampieri S, Wang Y, Goswami S, Wyckoff JB, Sahai E, Condeelis JS, Gertler FB (2008) A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell (in press)Google Scholar
  11. 11.
    Scott JA, Shewan AM, den Elzen NR et al (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell 17(3):1085–1095. doi: 10.1091/mbc.E05-07-0644 PubMedCrossRefGoogle Scholar
  12. 12.
    Prehoda KE, Lee DJ, Lim WA (1999) Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97(4):471–480. doi: 10.1016/S0092-8674(00)80757-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Boeda B et al (2007) Tes, a specific Mena interacting protein, breaks the rules for EVH1 binding. Mol Cell 28:1071–1082. doi: 10.1016/j.molcel.2007.10.033 PubMedCrossRefGoogle Scholar
  14. 14.
    Kuhnel K, Jarchau T, Wolf E et al (2004) The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proc Natl Acad Sci USA 101(49):17027–17032. doi: 10.1073/pnas.0403069101 PubMedCrossRefGoogle Scholar
  15. 15.
    Loureiro JJ, Rubinson DA, Bear JE et al (2002) Critical roles of phosphorylation and actin binding motifs, but not the central proline-rich region, for Ena/vasodilator-stimulated phosphoprotein (VASP) function during cell migration. Mol Biol Cell 13(7):2533–2546. doi: 10.1091/mbc.E01-10-0102 PubMedCrossRefGoogle Scholar
  16. 16.
    Di Modugno F, Bronzi G, Scanlan MJ et al (2004) Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8 + T-cell immune response. Int J Cancer 109(6):909–918. doi: 10.1002/ijc.20094 PubMedCrossRefGoogle Scholar
  17. 17.
    Di Modugno F, DeMonte L, Balsamo M et al (2007) Molecular cloning of hMena (ENAH) and its splice-variant hMena + 11a. Epidermal growth factor (EGF) increases their expression and stimulates hMena + 11a phosphorylation in breast cancer cell lines. Cancer Res 67:2657–2665. doi: 10.1158/0008-5472.CAN-06-1997 PubMedCrossRefGoogle Scholar
  18. 18.
    Di Modugno F, Mottolese M, Di Benedetto A et al (2006) The cytoskeleton regulatory protein hMena (ENAH) is overexpressed in human benign breast lesions with high risk of transformation and human epidermal growth factor receptor-2-positive/hormonal receptor-negative tumors. Clin Cancer Res 12(5):1470–1478. doi: 10.1158/1078-0432.CCR-05-2027 PubMedCrossRefGoogle Scholar
  19. 19.
    Urbanelli L, Massini C, Emiliani C et al (2006) Characterization of human Enah gene. Biochim Biophys Acta 1759(1–2):99–107PubMedGoogle Scholar
  20. 20.
    Brinkman BM (2004) Splice variants as cancer biomarkers. Clin Biochem 37(7):584–594. doi: 10.1016/j.clinbiochem.2004.05.015 PubMedCrossRefGoogle Scholar
  21. 21.
    Venables JP (2006) Unbalanced alternative splicing and its significance in cancer. BioEssays 28(4):378–386. doi: 10.1002/bies.20390 PubMedCrossRefGoogle Scholar
  22. 22.
    Wyckoff J, Segall J, Condeelis J (2000) The collection of the motile population of cells from a living tumor. Cancer Res 60:5401–5404PubMedGoogle Scholar
  23. 23.
    Wyckoff J, Segall JE, Condeelis J (2005) Single-cell imaging in animal tumors in vivo. In: Spector D, Goldman R (eds) Live cell imaging, a laboratory manual, chap 22. Cold Spring Harbor Laboratory Press, pp 409–422Google Scholar
  24. 24.
    Pino MS, Balsamo M, Di Modugno F et al (2008) Human Mena + 11a isoform serves as a marker of epithelial phenotype and sensitivity to epidermal growth factor receptor inhibition in human pancreatic cancer cell lines. Clin Cancer Res 14(15):4943–4950. doi: 10.1158/1078-0432.CCR-08-0436 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sumanta Goswami
    • 1
    • 2
    Email author
  • Ulrike Philippar
    • 3
    • 4
  • Daqian Sun
    • 1
  • Antonia Patsialou
    • 1
  • Jacob Avraham
    • 2
  • Weigang Wang
    • 1
    • 5
  • Francesca Di Modugno
    • 6
  • Paola Nistico
    • 7
  • Frank B. Gertler
    • 3
  • John S. Condeelis
    • 1
  1. 1.Department of Anatomy and Structural BiologyAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  2. 2.Department of BiologyYeshiva UniversityNew YorkUSA
  3. 3.Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Merck Research LaboratoriesBostonUSA
  5. 5.ImClone Systems IncorporatedNew YorkUSA
  6. 6.Laboratory of Experimental ChemotherapyRegina Elena Cancer InstituteRomeItaly
  7. 7.Laboratory of ImmunologyRegina Elena Cancer InstituteRomeItaly

Personalised recommendations