Clinical & Experimental Metastasis

, Volume 26, Issue 4, pp 299–309 | Cite as

Imaging and quantifying the dynamics of tumor-associated proteolysis

  • Mansoureh Sameni
  • Dora Cavallo-Medved
  • Julie Dosescu
  • Christopher Jedeszko
  • Kamiar Moin
  • Stefanie R. Mullins
  • Mary B. Olive
  • Deborah Rudy
  • Bonnie F. SloaneEmail author
Research Paper


The roles of proteases in cancer are dynamic. Furthermore, the roles or functions of any one protease may differ from one stage of cancer to another. Proteases from tumor-associated cells (e.g., fibroblasts, inflammatory cells, endothelial cells) as well as from tumor cells make important contributions to ‘tumor proteolysis’. Many tumors exhibit increases in expression of proteases at the level of transcripts and protein; however, whether those proteases play causal roles in malignant progression is known for only a handful of proteases. What the critical substrate or substrates that are cleaved in vivo by any given protease is also known for only a few proteases. Therefore, the recent development of techniques and reagents for live cell imaging of protease activity, in conjunction with informed knowledge of critical natural substrates, should help to define protease functions. Here we describe live cell assays for imaging proteolysis, protocols for quantifying proteolysis and the use of such assays to follow the dynamics of proteolysis by tumor cells alone and tumor cells interacting with other cells found in the tumor microenvironment. In addition, we describe an in vitro model that recapitulates the architecture of the mammary gland, a model designed to determine the effects of dynamic interactions with the surrounding microenvironment on ‘tumor proteolysis’ and the respective contributions of various cell types to ‘tumor proteolysis’. The assays and models described here could serve as screening platforms for the identification of proteolytic pathways that are potential therapeutic targets and for further development of technologies and imaging probes for in vivo use.


Imaging probes Invasion Malignant progression Proteolytic pathways Tumor microenvironment 



MCF-10A human breast epithelial cell line


Three dimensions


Three dimensions + time


MCF10.AT1 atypical hyperplastic cell line


Bovine serum albumin


MCF10.CA1d breast carcinoma cell line




MCF10.DCIS breast ductal carcinoma in situ cell line


Extracellular matrix


Fluorescein isothiocyanate


Human umbilical vein endothelial cells


Mammary architecture and microenvironment engineering


Matrix metalloproteinase


MCF-10AneoT ras-transfected breast epithelial cell line


Reconstituted basement membrane


Urokinase plasminogen activator



This work was supported by U.S. Public Health Service Grant CA 56586 and the following awards from the Department of Defense: a Breast Cancer Center of Excellence (DAMD17-02-1-0693) and BC051230 predoctoral fellowship (CJ). The Microscopy and Imaging Resources Laboratory is supported by National Institutes of Health Center Grants P30ES06639 and P30CA22453 and a Roadmap Grant U54RR020843.

Supplementary material (5.3 mb)
Supplemental Fig. 4 movie Time-course for degradation of DQ-collagen IV as HUVECs form cord-like structures in vitro. HUVEC were grown for 18 h on glass coverslips coated with rBM containing 25 μg/ml DQ-collagen IV. The movie depicts confocal image in real-time of proteolysis by live HUVECs over a time period from 2 – 18 h after plating. DQ-collagen IV degradation products (green) are seen surrounding the cord-like structures (MOV 5448 kb)
Supplemental Fig. 6 movie

Time-course for degradation of DQ-collagen I as human breast fibroblasts migrate on a matrix of collagen I containing DQ-collagen I. Movie depicts confocal image in real-time of proteolysis by live fibroblasts over a 90 min period starting 2 hr after plating. Discrete dots of fluorescent degradation products (green) appear as the cells detach from the matrix (MP4 205 kb)


  1. 1.
    Edwards DR, Hoyer-Hansen G, Blasi F, Sloane BF (eds) (2008) The cancer degradome—proteases and cancer biology. Springer, New YorkGoogle Scholar
  2. 2.
    Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536. doi: 10.1038/sj.onc.1206757 PubMedCrossRefGoogle Scholar
  3. 3.
    Kataoka H, Tanaka H, Nagaike K, Uchiyama S, Itoh H (2003) Role of cancer cell-stroma interaction in invasive growth of cancer cells. Hum Cell 16:1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8:279–287. doi: 10.1007/s11154-007-9037-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Mohamed MM, Cavallo-Medved D, Sloane BF (2008) Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer. Biol Chem 389:1117–1121. doi: 10.1515/BC.2008.117 PubMedCrossRefGoogle Scholar
  6. 6.
    Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808. doi: 10.1038/nrc2228 PubMedCrossRefGoogle Scholar
  7. 7.
    Enoksson M, Li J, Ivancic MM, Timmer JC, Wildfang E, Eroshkin A et al (2007) Identification of proteolytic cleavage sites by quantitative proteomics. J Proteome Res 6:2850–2858. doi: 10.1021/pr0701052 PubMedCrossRefGoogle Scholar
  8. 8.
    Schilling O, Overall CM (2007) Proteomic discovery of protease substrates. Curr Opin Chem Biol 11:36–45. doi: 10.1016/j.cbpa.2006.11.037 PubMedCrossRefGoogle Scholar
  9. 9.
    Fonović M, Bogyo M (2007) Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr Pharm Des 13:253–261. doi: 10.2174/138161207779313623 PubMedCrossRefGoogle Scholar
  10. 10.
    Barglow KT, Cravatt BF (2007) Activity-based protein profiling for the functional annotation of enzymes. Nat Methods 4:822–827. doi: 10.1038/nmeth1092 PubMedCrossRefGoogle Scholar
  11. 11.
    Funovics M, Weissleder R, Tung CH (2003) Protease sensors for bioimaging. Anal Bioanal Chem 377:956–963. doi: 10.1007/s00216-003-2199-0 PubMedCrossRefGoogle Scholar
  12. 12.
    Moin K, Sameni M, Jedeszko C et al (2008) Images of cleavage: tumor proteases in action. In: Edwards DR, Hoyer-Hansen GF, Blasi F, Sloane BF (eds) The cancer degradome—proteases and cancer biology. Springer, New YorkGoogle Scholar
  13. 13.
    Smith RE, van Frank RM (1975) The use of amino acid derivatives of 4-methoxy-beta-naphthylamine for the assay and subcellular localization of tissue proteinases. Front Biol 43:193–249PubMedGoogle Scholar
  14. 14.
    Stylli SS, Kaye AH, Lock P (2008) Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 15:725–737PubMedCrossRefGoogle Scholar
  15. 15.
    Kindzelskii AL, Amhad I, Keller D, Zhou MJ, Haugland RP, Garni-Wagner BA et al (2004) Pericellular proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of urokinase-type plasminogen activator. Histochem Cell Biol 121:299–310. doi: 10.1007/s00418-004-0639-3 PubMedCrossRefGoogle Scholar
  16. 16.
    Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904. doi: 10.1038/ncb1616 PubMedCrossRefGoogle Scholar
  17. 17.
    Mook OR, Van Overbeek C, Ackema EG, Van Maldegem F, Frederiks WM (2003) In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin. J Histochem Cytochem 51:821–829PubMedGoogle Scholar
  18. 18.
    Sameni M, Moin K, Sloane F (2000) Imaging proteolysis by living human breast cancer cells. Neoplasia 2:406–504. doi: 10.1038/sj.neo.7900116 CrossRefGoogle Scholar
  19. 19.
    Levine AM, Reddick R, Triche T (1978) Intracellular collagen fibrils in human sarcoma. Lab Invest 39:531–540PubMedGoogle Scholar
  20. 20.
    Ahram M, Sameni M, Qiu RG et al (2000) Rac1-induced endocytosis is associated with intracellular proteolysis during migration through a 3-dimensional matrix. Exp Cell Res 260:292–303. doi: 10.1006/excr.2000.5031 PubMedCrossRefGoogle Scholar
  21. 21.
    Sameni M, Dosescu J, Moin K et al (2003) Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis. Mol Imaging 2:159–175. doi: 10.1162/153535003322556903 PubMedCrossRefGoogle Scholar
  22. 22.
    Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268. doi: 10.1016/S1046-2023(03)00032-X PubMedCrossRefGoogle Scholar
  23. 23.
    Debnath J, Brugge JS (2005) Modeling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5:675–688. doi: 10.1038/nrc1695 PubMedCrossRefGoogle Scholar
  24. 24.
    Sameni M, Dosescu J, Sloane BF (2001) Imaging proteolysis by living human glioma cells. Biol Chem 382:785–788. doi: 10.1515/BC.2001.094 PubMedCrossRefGoogle Scholar
  25. 25.
    Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107. doi: 10.1161/01.RES.0000191547.64391.e3 PubMedCrossRefGoogle Scholar
  26. 26.
    Jedeszko C, Sameni M, Olive MB et al (2008) Visualizing protease activity in living cells: from 2D to 4D. Curr Protoc Cell Biol 39:4.20.1–4.20.15Google Scholar
  27. 27.
    Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650. doi: 10.1038/sj.onc.1204097 PubMedCrossRefGoogle Scholar
  28. 28.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. doi: 10.1126/science.1067100 PubMedCrossRefGoogle Scholar
  29. 29.
    Mannello F, Tonti G, Papa S (2005) Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets 5:285–298. doi: 10.2174/1568009054064615 PubMedCrossRefGoogle Scholar
  30. 30.
    Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239. doi: 10.1038/nrc1821 PubMedCrossRefGoogle Scholar
  31. 31.
    Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18PubMedGoogle Scholar
  32. 32.
    Folkman J (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2:S127–S1233PubMedGoogle Scholar
  33. 33.
    van Hinsbergh VW, Engelse MA, Quaz PH (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26:716–728. doi: 10.1161/01.ATV.0000209518.58252.17 PubMedCrossRefGoogle Scholar
  34. 34.
    Roy R, Zhang B, Moses MA (2006) Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 312:608–622. doi: 10.1016/j.yexcr.2005.11.022 PubMedCrossRefGoogle Scholar
  35. 35.
    Sottile J (2004) Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 1654:13–22PubMedGoogle Scholar
  36. 36.
    Davis GE, Koh W, Stratman AN (2007) Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res Part C Embryo Today 81:270–285. doi: 10.1002/bdrc.20107 CrossRefGoogle Scholar
  37. 37.
    Miller FR, Santner SJ, Tait L et al (2000) xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92:1185–1186. doi: 10.1093/jnci/92.14.1185A PubMedCrossRefGoogle Scholar
  38. 38.
    Santner SJ, Dawson PJ, Tait L et al (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65:101–110. doi: 10.1023/A:1006461422273 PubMedCrossRefGoogle Scholar
  39. 39.
    Soule HD, Maloney TM, Wolman SR et al (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086PubMedGoogle Scholar
  40. 40.
    Miller FR (2000) Xenograft models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5:379–391. doi: 10.1023/A:1009577811584 PubMedCrossRefGoogle Scholar
  41. 41.
    Basolo F, Elliott J, Tait L et al (1991) Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol Carcinog 4:25–35. doi: 10.1002/mc.2940040106 PubMedCrossRefGoogle Scholar
  42. 42.
    Dawson PJ, Wolman SR, Tait L et al (1996) MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 148:313–319PubMedGoogle Scholar
  43. 43.
    Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40. doi: 10.1016/S0092-8674(02)01001-2 PubMedCrossRefGoogle Scholar
  44. 44.
    Li Q, Mullins SR, Sloane BF et al (2008) p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 10(4):314–329Google Scholar
  45. 45.
    Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:168–184. doi: 10.1006/excr.2000.5133 CrossRefGoogle Scholar
  46. 46.
    Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast cancer and ovarian cancer. Semin Cancer Biol 12:97–204. doi: 10.1006/scbi.2001.0417 PubMedCrossRefGoogle Scholar
  47. 47.
    Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049. doi: 10.1126/science.1067431 PubMedCrossRefGoogle Scholar
  48. 48.
    Erickson AC, Barcellos-Hoff MH (2003) The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 7:71–88Google Scholar
  49. 49.
    Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247. doi: 10.1007/s10911-005-9584-6 (review)PubMedCrossRefGoogle Scholar
  50. 50.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell 124:263–266. doi: 10.1016/j.cell.2006.01.007 PubMedCrossRefGoogle Scholar
  51. 51.
    Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612. doi: 10.1158/0008-5472.CAN-05-4005 PubMedCrossRefGoogle Scholar
  52. 52.
    Nelson CM, Bissell MJ (2005) Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 15:342–352. doi: 10.1016/j.semcancer.2005.05.001 PubMedCrossRefGoogle Scholar
  53. 53.
    Ben-Baruch A (2003) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 5:31–36. doi: 10.1186/bcr554 PubMedCrossRefGoogle Scholar
  54. 54.
    Boudreau N, Myers C (2003) Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 5:140–146. doi: 10.1186/bcr589 PubMedCrossRefGoogle Scholar
  55. 55.
    Schedinn P, Elias A (2004) Multistep tumorigenesis and the microenvironment. Breast Cancer Res 6:93–101. doi: 10.1186/bcr772 CrossRefGoogle Scholar
  56. 56.
    Haslam SC, Woodward TL (2005) Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 5:140–146Google Scholar
  57. 57.
    Shekhar MP, Pauley R, Heppner G (2003) Host microenvironment in breast cancer development: extracellular matrix-stromal cello contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 5:130–135. doi: 10.1186/bcr580 PubMedCrossRefGoogle Scholar
  58. 58.
    Vincent-Salomon A, Theiry JP (2003) Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 5:101–106. doi: 10.1186/bcr578 PubMedCrossRefGoogle Scholar
  59. 59.
    Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 5:31–36. doi: 10.1186/bcr573 CrossRefGoogle Scholar
  60. 60.
    Curino AC, Engelholm LH, Yamada SS et al (2005) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169:977–985. doi: 10.1083/jcb.200411153 PubMedCrossRefGoogle Scholar
  61. 61.
    Vasiljeva O, Papazoglou A, Kruger A et al (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250. doi: 10.1158/0008-5472.CAN-05-4463 PubMedCrossRefGoogle Scholar
  62. 62.
    Tynan JA, Wen F, Muller WJ et al (2005) Ets2-dependent microenvironment support of mouse mammary tumors. Oncogene 24:6870–6876. doi: 10.1038/sj.onc.1208856 PubMedCrossRefGoogle Scholar
  63. 63.
    Iyengar P, Espina V, Williams TW et al (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115:1163–1176PubMedGoogle Scholar
  64. 64.
    Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246. doi: 10.1158/0008-5472.CAN-06-1278 PubMedCrossRefGoogle Scholar
  65. 65.
    Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448. doi: 10.1016/S1535-6108(03)00114-4 PubMedCrossRefGoogle Scholar
  66. 66.
    Almholt K, Green KA, Juncker-Jensen A et al (2007) Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia 12:83–97. doi: 10.1007/s10911-007-9040-x PubMedCrossRefGoogle Scholar
  67. 67.
    Nielsen BS, Rank F, Illemann M et al (2007) Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor. Int J Cancer 20:2086–2095. doi: 10.1002/ijc.22340 CrossRefGoogle Scholar
  68. 68.
    Sloane BF, Sameni M, Podgorski I et al (2006) Functional imaging of tumor proteolysis. Annu Rev Pharmacol Toxicol 46:301–315. doi: 10.1146/annurev.pharmtox.45.120403.095853 PubMedCrossRefGoogle Scholar
  69. 69.
    Allinen M, Beroukhim R, Cai L (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32. doi: 10.1016/j.ccr.2004.06.010 PubMedCrossRefGoogle Scholar
  70. 70.
    Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ et al (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1:203–209. doi: 10.1038/nchembio728 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mansoureh Sameni
    • 1
  • Dora Cavallo-Medved
    • 1
    • 2
  • Julie Dosescu
    • 1
  • Christopher Jedeszko
    • 1
  • Kamiar Moin
    • 1
    • 2
  • Stefanie R. Mullins
    • 1
    • 2
    • 3
  • Mary B. Olive
    • 1
  • Deborah Rudy
    • 1
  • Bonnie F. Sloane
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology, School of MedicineWayne State UniversityDetroitUSA
  2. 2.Barbara Ann Karmanos Cancer InstituteWayne State UniversityDetroitUSA
  3. 3.Department of Medical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations