Clinical & Experimental Metastasis

, Volume 25, Issue 7, pp 799–810 | Cite as

Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization

  • Daniel P. Fitzgerald
  • Diane Palmieri
  • Emily Hua
  • Elizabeth Hargrave
  • Jeanne M. Herring
  • Yongzhen Qian
  • Eleazar Vega-Valle
  • Robert J. Weil
  • Andreas M. Stark
  • Alexander O. Vortmeyer
  • Patricia S. Steeg
Research Paper

Abstract

Interactions between tumor cells and the microenvironment are crucial to tumor formation and metastasis. The central nervous system serves as a “sanctuary” site for metastasis, resulting in poor prognosis in diagnosed patients. The incidence of brain metastasis is increasing; however, little is known about interactions between the brain and metastatic cells. Brain pathology was examined in an experimental model system of brain metastasis, using a subline of MDA-MB-231 human breast cancer cells. The results were compared with an analysis of sixteen resected human brain metastases of breast cancer. Experimental metastases formed preferentially in specific brain regions, with a distribution similar to clinical cases. In both the 231-BR model, and in human specimens, Ki67 expression indicated that metastases were highly proliferative (~50%). Little apoptosis was observed in either set of tumors. In the model system, metastases elicited a brain inflammatory response, with extensive reactive gliosis surrounding metastases. Similarly, large numbers of glial cells were found within the inner tumor mass of human brain metastases. In vitro co-cultures demonstrated that glia induced a ~5-fold increase in metastatic cell proliferation (P < 0.001), suggesting that brain tissue secretes factors conducive to tumor cell growth. Molecules used to signal between tumor cells and the surrounding glia could provide a new avenue of therapeutic targets for brain metastases.

Keywords

Brain metastasis Brain pathology Breast cancer Neuroinflammation Reactive glia Xenograft 

Abbreviations

DAPI 4′6

Diamidino-2-phenylindole

EGFP

Enhanced Green Fluorescent Protein

GFAP

Glial Fibrillary Acidic Protein

H&E

Hematoxylin and eosin

Notes

Acknowledgements

We would like to thank Hong Wang (Developmental Neurobiology Section of the NHLBI Division of Intramural Research, NIH) for providing mixed glial cultures used in the soft agar experiments. This research was supported by the US Department of Defense Breast Cancer Research Program, grant number: W81 XWH-062-0033; and the Intramural Research Program of the National Cancer Institute, CCR, NIH.

References

  1. 1.
    Weil RJ, Palmieri DC, Bronder JL et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920PubMedGoogle Scholar
  2. 2.
    Palmieri D, Smith QR, Lockman PR et al (2006) Brain metastases of breast cancer. Breast Dis 26:139–147PubMedGoogle Scholar
  3. 3.
    Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198. doi:10.1158/0008-5472.CAN-06-3316 PubMedCrossRefGoogle Scholar
  4. 4.
    Santarelli JG, Sarkissian V, Hou LC et al (2007) Molecular events of brain metastasis. Neurosurg Focus 22(3):E1. doi:10.3171/foc.2007.22.3.2 PubMedCrossRefGoogle Scholar
  5. 5.
    Cavaliere R, Schiff D (2007) Chemotherapy and cerebral metastases: Misperception or reality? Neurosurg Focus 22(3):E6. doi:10.3171/foc.2007.22.3.7 PubMedCrossRefGoogle Scholar
  6. 6.
    Chang EL, Lo S (2003) Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 8(5):398–410. doi:10.1634/theoncologist.8-5-398 PubMedCrossRefGoogle Scholar
  7. 7.
    Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54(1):131–140. doi:10.1227/01.NEU.0000097715.11966.8E Discussion 41-2PubMedCrossRefGoogle Scholar
  8. 8.
    van den Bent MJ, Hegi ME, Stupp R (2006) Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42(5):582–588. doi:10.1016/j.ejca.2005.06.031 PubMedCrossRefGoogle Scholar
  9. 9.
    Drappatz J, Wen PY (2006) Chemotherapy and targeted molecular therapies for brain metastases. Expert Rev Neurother 6(10):1465–1479. doi:10.1586/14737175.6.10.1465 PubMedCrossRefGoogle Scholar
  10. 10.
    Chen EI, Hewel J, Krueger JS et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67(4):1472–1486. doi:10.1158/0008-5472.CAN-06-3137 PubMedCrossRefGoogle Scholar
  11. 11.
    Fidler IJ, Schackert G, Zhang RD et al (1999) The biology of melanoma brain metastasis. Cancer Metastasis Rev 18(3):387–400. doi:10.1023/A:1006329410433 PubMedCrossRefGoogle Scholar
  12. 12.
    Kim LS, Huang S, Lu W et al (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107–118. doi:10.1023/B:CLIN.0000024761.00373.55 PubMedCrossRefGoogle Scholar
  13. 13.
    Kusters B, Leenders WP, Wesseling P et al (2002) Vascular endothelial growth factor-a(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345PubMedGoogle Scholar
  14. 14.
    Lu W, Bucana CD, Schroit AJ (2007) Pathogenesis and vascular integrity of breast cancer brain metastasis. Int J Cancer 120(5):1023–1026. doi:10.1002/ijc.22388 PubMedCrossRefGoogle Scholar
  15. 15.
    Saito N, Hatori T, Murata N et al (2007) A double three-step theory of brain metastasis in mice: The role of the pia mater and matrix metalloproteinases. Neuropathol Appl Neurobiol 33(3):288–298. doi:10.1111/j.1365-2990.2007.00799.x PubMedCrossRefGoogle Scholar
  16. 16.
    Schackert G, Price JE, Zhang RD et al (1990) Regional growth of different human melanomas as metastases in the brain of nude mice. Am J Pathol 136(1):95–102PubMedGoogle Scholar
  17. 17.
    Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the mda-mb-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495. doi:10.1359/jbmr.2001.16.8.1486 PubMedCrossRefGoogle Scholar
  18. 18.
    Mendes O, Kim HT, Stoica G (2005) Expression of mmp2, mmp9 and mmp3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22(3):237–246. doi:10.1007/s10585-005-8115-6 PubMedCrossRefGoogle Scholar
  19. 19.
    Rye PD, Norum L, Olsen DR et al (1996) Brain metastasis model in athymic nude mice using a novel muc1-secreting human breast-cancer cell line, ma11. Int J Cancer 68(5):682–687. doi :10.1002/(SICI)1097-0215(19961127)68:5<682::AID-IJC20>3.0.CO;2-2PubMedCrossRefGoogle Scholar
  20. 20.
    Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L et al (in press) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. Journal of the National Cancer InstituteGoogle Scholar
  21. 21.
    Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 1:571–573. doi:10.1016/S0140-6736(00)49915-0 CrossRefGoogle Scholar
  22. 22.
    Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15(1):97–101. doi:10.1016/j.gde.2004.12.003 PubMedCrossRefGoogle Scholar
  23. 23.
    De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429–447. doi:10.1002/path.1398 PubMedCrossRefGoogle Scholar
  24. 24.
    Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99(21):1583–1593. doi:10.1093/jnci/djm187 PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815. doi:10.1002/jcb.21159 PubMedCrossRefGoogle Scholar
  26. 26.
    Schedin P, O’Brien J, Rudolph M et al (2007) Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 12(1):71–82. doi:10.1007/s10911-007-9039-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35(4 Suppl 1):155–162. doi:10.1016/j.exphem.2007.01.024 PubMedCrossRefGoogle Scholar
  28. 28.
    Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7(8):585–598. doi:10.1038/nrc2189 PubMedCrossRefGoogle Scholar
  29. 29.
    Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7(4):280–290. doi:10.1054/jocn.1999.0212 PubMedCrossRefGoogle Scholar
  30. 30.
    Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61(16):2031–2045. doi:10.1007/s00018-004-4043-x PubMedCrossRefGoogle Scholar
  31. 31.
    de Vries NA, Beijnen JH, Boogerd W et al (2006) Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6(8):1199–1209. doi:10.1586/14737175.6.8.1199 PubMedCrossRefGoogle Scholar
  32. 32.
    Engelhardt B (2006) Molecular mechanisms involved in t cell migration across the blood-brain barrier. J Neural Transm 113(4):477–485. doi:10.1007/s00702-005-0409-y PubMedCrossRefGoogle Scholar
  33. 33.
    Streit WJ, Conde JR, Fendrick SE et al (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27(7):685–691PubMedGoogle Scholar
  34. 34.
    Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400–407. doi:10.1177/1073858405278321 PubMedCrossRefGoogle Scholar
  35. 35.
    Kobori N, Clifton GL, Dash P (2002) Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res 104(2):148–158. doi:10.1016/S0169-328X(02)00331-5 PubMedCrossRefGoogle Scholar
  36. 36.
    Long Y, Zou L, Liu H et al (2003) Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 71(5):710–720. doi:10.1002/jnr.10524 PubMedCrossRefGoogle Scholar
  37. 37.
    Matzilevich DA, Rall JM, Moore AN et al (2002) High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 67(5):646–663. doi:10.1002/jnr.10157 PubMedCrossRefGoogle Scholar
  38. 38.
    Natale JE, Ahmed F, Cernak I et al (2003) Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20(10):907–927. doi:10.1089/089771503770195777 PubMedCrossRefGoogle Scholar
  39. 39.
    Raghavendra Rao VL, Dhodda VK, Song G et al (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by genechip analysis. J Neurosci Res 71(2):208–219. doi:10.1002/jnr.10486 PubMedCrossRefGoogle Scholar
  40. 40.
    Sun L, Lee J, Fine HA (2004) Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113(9):1364–1374PubMedGoogle Scholar
  41. 41.
    Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11(3):387–394. doi:10.1016/S0959-4388(00)00223-3 PubMedCrossRefGoogle Scholar
  42. 42.
    Giaume C, Kirchhoff F, Matute C et al (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324–1335. doi:10.1038/sj.cdd.4402144 PubMedCrossRefGoogle Scholar
  43. 43.
    Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo mri of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010. doi:10.1002/mrm.21029 PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang RD, Fidler IJ, Price JE (1991) Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11(4):204–215PubMedGoogle Scholar
  45. 45.
    Delattre JY, Krol G, Thaler HT et al (1988) Distribution of brain metastases. Arch Neurol 45(7):741–744PubMedGoogle Scholar
  46. 46.
    Hwang TL, Close TP, Grego JM et al (1996) Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer 77(8):1551–1555. doi :10.1002/(SICI)1097-0142(19960415)77:8<1551::AID-CNCR19>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  47. 47.
    Busch SA, Silver J (2007) The role of extracellular matrix in cns regeneration. Curr Opin Neurobiol 17(1):120–127. doi:10.1016/j.conb.2006.09.004 PubMedCrossRefGoogle Scholar
  48. 48.
    Ajtai BM, Kalman M (2001) Reactive glia support and guide axon growth in the rat thalamus during the first postnatal week. A sharply timed transition from permissive to non-permissive stage. Int J Dev Neurosci 19(6):589–597. doi:10.1016/S0736-5748(01)00038-7 PubMedCrossRefGoogle Scholar
  49. 49.
    Colodner KJ, Montana RA, Anthony DC et al (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64(2):163–169PubMedGoogle Scholar
  50. 50.
    Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40(2):252–259. doi:10.1002/glia.10147 PubMedCrossRefGoogle Scholar
  51. 51.
    Nuttall RK, Silva C, Hader W et al (2007) Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia 55(5):516–526. doi:10.1002/glia.20478 PubMedCrossRefGoogle Scholar
  52. 52.
    Nishizuka I, Ishikawa T, Hamaguchi Y et al (2002) Analysis of gene expression involved in brain metastasis from breast cancer using cdna microarray. Breast Cancer (Tokyo, Japan) 9(1):26–32Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniel P. Fitzgerald
    • 1
  • Diane Palmieri
    • 1
  • Emily Hua
    • 1
  • Elizabeth Hargrave
    • 1
  • Jeanne M. Herring
    • 2
  • Yongzhen Qian
    • 2
  • Eleazar Vega-Valle
    • 2
  • Robert J. Weil
    • 3
  • Andreas M. Stark
    • 4
  • Alexander O. Vortmeyer
    • 5
  • Patricia S. Steeg
    • 1
  1. 1.Women’s Cancers Section, Laboratory of Molecular PharmacologyNational Cancer InstituteBethesdaUSA
  2. 2.Laboratory Animal Sciences Program, Science Applications International Corporation-FrederickNational Cancer Institute NIHFrederickUSA
  3. 3.Department of Neurosurgery and Neurological InstituteBrain Tumor & Neuro-Oncology Center, Cleveland ClinicClevelandUSA
  4. 4.Department of NeurosurgerySchleswig-Holstein University Medical CenterCampus KielGermany
  5. 5.Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke NIHBethesdaUSA

Personalised recommendations