Clinical & Experimental Metastasis

, Volume 25, Issue 5, pp 581–590 | Cite as

Intraosseous injection of RM1 murine prostate cancer cells promotes rapid osteolysis and periosteal bone deposition

  • N. Patrick McCabe
  • Maria Madajka
  • Amit Vasanji
  • Tatiana V. Byzova
Research Paper


The molecular mechanisms associated with prostate cancer (PCa) progression within bone remain a topic of intense investigation. With the availability of transgenic mouse strains, a model of PCa for use in immune competent/transgenic mice would be highly beneficial. This study was designed to explore the utility of RM1 mouse PCa cells in investigations of tumor:bone interactions. The efficacies of several implantation techniques were examined for reliably producing intra-bone RM1 tumor growth and bone lesion formation in immune competent mice. Longitudinal monitoring of bone remodeling and lesion phenotypes was conducted by microcomputed tomography (μCT) and histological analyses. Our results indicate that direct intrabone injections of RM1 cells are necessary for tumor growth within bone and direct implantation promotes the rapid development of osteolytic bone lesions with periosteal bone deposition post-cortical breach. In vitro, RM1 cells promote the proliferation of osteoblast (MC3T3-E1) and osteoclast (Raw264.7) progenitors in a dose dependent manner. Conditioned culture media from RM1 cells appears to promote earlier expression of genes/proteins associated with osteoblastic differentiation. While clearly stimulating osteoclast function in vivo, RM1 cells had little effect on differentiation and tartate resistant acid phosphatase (TRAP) expression by Raw264.7 cells. These data, coupled with in vivo μCT images, indicate the ability of RM1 cells to induce mixed, yet predominentally osteolytic, responses in bone and illustrate the potential of RM1 cells as a model of investigating prostate tumor:stroma interactions in immune competent/transgenic mice on a C57BL/6 background.


Prostate cancer Bone Animal model Osteolytic Osteoblastic 



This work was supported by the following grants: DK060933/CA126847 to T.V. Byzova. N.P. McCabe is supported by a Ruth L. Kirschstein Research Service Award (NRSA) Individual Fellowship (5F32CA1172462); Cleveland Clinic Musculoskeletal Core Center funded in part by NIAMS Core Center Grant 1P30 AR-050953.

Supplementary material

10585_2008_9175_MOESM1_ESM.pdf (52 kb)
Supplemental Fig. 1. E0771 murine breast carcinoma cells produce strictly lytic responses following direct intratibial injection. (a) H&E stained section of tibia 21 days following injection of 1x104 cells. Arrowhead depicts region of corticle breach with adjacent soft tissue invasion by E0771 cells. Magnification of 5×. (b) Osteoclasts in resorption lacunae adjacent to tumor cells. Arrows indicate resorption lacunae. Magnification of 40×. (c) Isosurface volume of tibia 21 days following the injection of E0771 cells. Arrow indicates region of corticle erosion. (PDF 51 kb)


  1. 1.
    American Cancer Society (2007) Cancer facts & figures 2007. American Cancer Society, Inc., AtlantaGoogle Scholar
  2. 2.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594. doi: 10.1002/(SICI)1097-0142(19971015)80:8±≤1588::AID-CNCR9≥3.0.CO;2-G PubMedCrossRefGoogle Scholar
  3. 3.
    Keller ET, Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91:718–729. doi: 10.1002/jcb.10662 PubMedCrossRefGoogle Scholar
  4. 4.
    Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443. doi: 10.1073/pnas.92.8.3439 PubMedCrossRefGoogle Scholar
  5. 5.
    Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, Dodd JG, Duckworth ML, Matusik RJ (1998) Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 78:319–333PubMedGoogle Scholar
  6. 6.
    Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, Sangiorgi FO, Maxson RE, Sucov HM, Roy-Burman P (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101:61–69. doi: 10.1016/S0925-4773(00)00551-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355. doi: 10.1038/1235 PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson TC, Southgate J, Kitchener G, Land H (1989) Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56:917–930. doi: 10.1016/0092-8674(89)90625-9 PubMedCrossRefGoogle Scholar
  9. 9.
    Grant JF, Iwasawa T, Sinn HW, Siemens DR, Griffith TS, Takacs EB, Ratliff TL (2006) Induction of protective immunity to RM-1 prostate cancer cells with ALVAC-IL-2/IL-12/TNF-alpha combination therapy. Int J Cancer 119:2632–2641. doi: 10.1002/ijc.22220 PubMedCrossRefGoogle Scholar
  10. 10.
    Griffith TS, Kawakita M, Tian J, Ritchey J, Tartaglia J, Sehgal I, Thompson TC, Zhao W, Ratliff TL (2001) Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses. J Natl Cancer Inst 93:998–1007. doi: 10.1093/jnci/93.13.998 PubMedCrossRefGoogle Scholar
  11. 11.
    Hall SJ, Thompson TC (1997) Spontaneous but not experimental metastatic activities differentiate primary tumor-derived vs metastasis-derived mouse prostate cancer cell lines. Clin Exp Metastasis 15:630–638. doi: 10.1023/A:1018499515883 PubMedCrossRefGoogle Scholar
  12. 12.
    Baley PA, Yoshida K, Qian W, Sehgal I, Thompson TC (1995) Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J Steroid Biochem Mol Biol 52:403–413. doi: 10.1016/0960-0760(95)00001-G PubMedCrossRefGoogle Scholar
  13. 13.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  14. 14.
    Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, Hatano T, Ogawa Y, Ochiai A (2001) Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res 61:2177–2182PubMedGoogle Scholar
  15. 15.
    Tourkova IL, Yamabe K, Chatta G, Shurin GV, Shurin MR (2003) NK cells mediate Flt3 ligand-induced protection of dendritic cell precursors in vivo from the inhibition by prostate carcinoma in the murine bone marrow metastasis model. J Immunother (1997) 26:468–472CrossRefGoogle Scholar
  16. 16.
    Tourkova IL, Yamabe K, Foster B, Chatta G, Perez L, Shurin GV, Shurin MR (2004) Murine prostate cancer inhibits both in vivo and in vitro generation of dendritic cells from bone marrow precursors. Prostate 59:203–213. doi: 10.1002/pros.10369 PubMedCrossRefGoogle Scholar
  17. 17.
    Voeks DJ, Martiniello-Wilks R, Russell PJ (2002) Derivation of MPR and TRAMP models of prostate cancer and prostate cancer metastasis for evaluation of therapeutic strategies. Urol Oncol 7:111–118. doi: 10.1016/S1078-1439(01)00180-6 PubMedCrossRefGoogle Scholar
  18. 18.
    Bloom RA, Libson E, Husband JE, Stoker DJ (1987) The periosteal sunburst reaction to bone metastases. A literature review and report of 20 additional cases. Skeletal Radiol 16:629–634. doi: 10.1007/BF00357111 PubMedCrossRefGoogle Scholar
  19. 19.
    El Otmany A, Bouklata S, Hafid H, Chami I, Jalil A, Benjelloun S, Souadka A, Belabbas M (2000) Bone metastasis revealing a primary prostate cancer. J Radiol 81:990–991PubMedGoogle Scholar
  20. 20.
    Hove B, Gyldensted C (1990) Spiculated vertebral metastases from prostatic carcinoma. Report of first two cases. Neuroradiology 32:337–339. doi: 10.1007/BF00593059 PubMedCrossRefGoogle Scholar
  21. 21.
    Wyche LD, de Santos LA (1978) Spiculated periosteal reaction in metastatic disease resembling osteosarcoma. Orthopedics 1:215–221PubMedGoogle Scholar
  22. 22.
    Henry MD, Silva MD, Wen S, Siebert E, Solin E, Chandra S, Worland PJ (2005) Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate cancer cells resembles subset of bone metastases in prostate cancer patients. Prostate 65:347–354. doi: 10.1002/pros.20300 PubMedCrossRefGoogle Scholar
  23. 23.
    LeRoy BE, Bahnson RR, Rosol TJ (2002) New bone formation in nude mouse calvaria induced by canine prostate tissue. Mol Cell Endocrinol 197:257–263. doi: 10.1016/S0303-7207(02)00260-5 PubMedCrossRefGoogle Scholar
  24. 24.
    Chirgwin JM, Mohammad KS, Guise TA (2004) Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 4:308–318PubMedGoogle Scholar
  25. 25.
    Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, Buhler KR, Vessella RL (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52:20–33. doi: 10.1002/pros.10091 PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez J, Silva S, Santibanez JF (1996) Prostate-derived soluble factors block osteoblast differentiation in culture. J Cell Biochem 61:18–25. doi: 10.1002/(SICI)1097-4644(19960401)61:1≤18::AID-JCB3≥3.0.CO;2-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • N. Patrick McCabe
    • 1
  • Maria Madajka
    • 1
  • Amit Vasanji
    • 2
  • Tatiana V. Byzova
    • 1
    • 3
  1. 1.Department of Molecular Cardiology, NB50The Cleveland Clinic Lerner Research InstituteClevelandUSA
  2. 2.Department of Biomedical EngineeringThe Cleveland Clinic Lerner Research InstituteClevelandUSA
  3. 3.The Cleveland ClinicTaussig Cancer CenterClevelandUSA

Personalised recommendations