Clinical & Experimental Metastasis

, Volume 25, Issue 6, pp 629–642 | Cite as

Epithelial mesenchymal transition traits in human breast cancer cell lines

  • T. Blick
  • E. Widodo
  • H. Hugo
  • M. Waltham
  • M. E. Lenburg
  • R. M. Neve
  • E. W. Thompson
Research Paper

Abstract

Epithelial mesenchymal transition (EMT) has long been associated with breast cancer cell invasiveness and evidence of EMT processes in clinical samples is growing rapidly. Genome-wide transcriptional profiling of increasingly larger numbers of human breast cancer (HBC) cell lines have confirmed the existence of a subgroup of cell lines (termed Basal B/Mesenchymal) with enhanced invasive properties and a predominantly mesenchymal gene expression signature, distinct from subgroups with predominantly luminal (termed Luminal) or mixed basal/luminal (termed Basal A) features (Neve et al Cancer Cell 2006). Studies providing molecular and cellular analyses of EMT features in these cell lines are summarised, and the expression levels of EMT-associated factors in these cell lines are analysed. Recent clinical studies supporting the presence of EMT-like changes in vivo are summarised. Human breast cancer cell lines with mesenchymal properties continue to hold out the promise of directing us towards key mechanisms at play in the metastatic dissemination of breast cancer.

Keywords

EMT Basal Luminal Mesenchymal Breast cancer Breast cancer stem cells 

Abbreviations

EMT

Epithelial mesenchymal transition

EGF

Epidermal growth factor

HBC

Human breast cancer

IGF-IR

Type I insulin-like growth factor receptor

MET

Mesenchymal epithelial transition

TNFα

Tumor necrosis factor alpha

References

  1. 1.
    Duband JL, Monier F, Delannet M, Newgreen D (1995) Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel) 154(1):63–78CrossRefGoogle Scholar
  2. 2.
    Prindull G, Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103(8):2892–2899PubMedCrossRefGoogle Scholar
  3. 3.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142PubMedCrossRefGoogle Scholar
  4. 4.
    Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774PubMedCrossRefGoogle Scholar
  5. 5.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558PubMedCrossRefGoogle Scholar
  6. 6.
    Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26PubMedGoogle Scholar
  7. 7.
    Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746PubMedCrossRefGoogle Scholar
  8. 8.
    Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13(5):555–562PubMedCrossRefGoogle Scholar
  9. 9.
    Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132(14):3151–3161PubMedCrossRefGoogle Scholar
  10. 10.
    Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39(6):1082–1088PubMedCrossRefGoogle Scholar
  11. 11.
    Thomson S, Buck E, Petti F et al (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65(20):9455–9462PubMedCrossRefGoogle Scholar
  12. 12.
    Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65(14):5996–6000 discussion -1PubMedCrossRefGoogle Scholar
  13. 13.
    Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65(14):5991–5995 discussion 5PubMedCrossRefGoogle Scholar
  14. 14.
    Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66(17):8319–8326PubMedCrossRefGoogle Scholar
  15. 15.
    Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988PubMedCrossRefGoogle Scholar
  16. 16.
    Hlubek F, Spaderna S, Schmalhofer O, Jung A, Kirchner T, Brabletz T (2007) Wnt/FZD signaling and colorectal cancer morphogenesis. Front Biosci 12:458–470PubMedCrossRefGoogle Scholar
  17. 17.
    Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12PubMedCrossRefGoogle Scholar
  19. 19.
    Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82(3):175–181PubMedCrossRefGoogle Scholar
  20. 20.
    Zeisberg M, Yang C, Martino M, Duncan M, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347Google Scholar
  21. 21.
    Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185(1–3):146–156PubMedCrossRefGoogle Scholar
  22. 22.
    Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293(1):L1–L8PubMedCrossRefGoogle Scholar
  23. 23.
    Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson EW, Paik S, Brunner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150(3):534–544PubMedCrossRefGoogle Scholar
  25. 25.
    Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52(19):5190–5197PubMedGoogle Scholar
  26. 26.
    Gilles C, Polette M, Zahm J, Tournier J, Volders L, Foidart J, Birembaut P (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625PubMedGoogle Scholar
  27. 27.
    Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP (1994) Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 31(2–3):325–335PubMedCrossRefGoogle Scholar
  28. 28.
    Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644PubMedCrossRefGoogle Scholar
  29. 29.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148(4):779–790PubMedCrossRefGoogle Scholar
  30. 30.
    Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203PubMedCrossRefGoogle Scholar
  31. 31.
    Hendrix MJ, Seftor EA, Seftor RE, Trevor KT (1997) Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150(2):483–495PubMedGoogle Scholar
  32. 32.
    Jungert K, Buck A, von Wichert G, Adler G, Konig A, Buchholz M, Gress TM, Ellenrieder V (2007) Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res 67(4):1563–1570PubMedCrossRefGoogle Scholar
  33. 33.
    Vasko V, Espinosa AV, Scouten W et al (2007) Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104(8):2803–2808PubMedCrossRefGoogle Scholar
  34. 34.
    Gilles C, Newgreen D, Sato H, Thompson EW (2004) Matrix Metalloproteases and epithelial-to mesenchymal transition: implications for carcinoma metastasis In: P Savagner (ed) Rise and fall of epithelial phenotype (webversion at www.eurekah.com). Landes Bioscience Publishers, Georgetown, TX, pp 297–315Google Scholar
  35. 35.
    Giunciuglio D, Culty M, Fassina G et al (1995) Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 63(6):815–822PubMedCrossRefGoogle Scholar
  36. 36.
    Kim HJ, Litzenburger BC, Cui X et al (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27(8):3165–3175PubMedCrossRefGoogle Scholar
  37. 37.
    Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724PubMedCrossRefGoogle Scholar
  38. 38.
    Li GC, Wang ZY (2006) Constitutive expression of RbAp46 induces epithelial-mesenchymal transition in mammary epithelial cells. Anticancer Res 26(5A):3555–3560PubMedGoogle Scholar
  39. 39.
    Perou CM, Jeffrey SS, van de Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson EW, Torri J, Sabol M et al (1994) Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 12(3):181–194PubMedCrossRefGoogle Scholar
  41. 41.
    Galliher AJ, Schiemann WP (2006) Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8(4):R42PubMedCrossRefGoogle Scholar
  42. 42.
    Planas -Silva MD, Waltz PK (2007) Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 104(1–2):11–21PubMedCrossRefGoogle Scholar
  43. 43.
    Shtutman M, Levina E, Ohouo P, Baig M, Roninson IB (2006) Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 66(23):11370–11380PubMedCrossRefGoogle Scholar
  44. 44.
    Whitehead RH, Bertoncello I, Webber LM, Pedersen JS (1983) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. J Natl Cancer Inst 70(4):649–661PubMedGoogle Scholar
  45. 45.
    Whitehead RH, Monaghan P, Webber LM, Bertoncello I, Vitali AA (1983) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. II. Characterization of cells growing as organoids. J Natl Cancer Inst 71(6):1193–1203PubMedGoogle Scholar
  46. 46.
    Whitehead RH, Quirk SJ, Vitali AA, Funder JW, Sutherland RL, Murphy LC (1984) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. III. Hormone receptor status and responsiveness. J Natl Cancer Inst 73(3):643–648PubMedGoogle Scholar
  47. 47.
    Hugo, Ackland ML, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial––mesenchymal and mesenchymal––epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383Google Scholar
  48. 48.
    Ackland ML, Michalczyk A, Whitehead RH (2001) PMC42, A novel model for the differentiated human breast. Exp Cell Res 263(1):14–22PubMedCrossRefGoogle Scholar
  49. 49.
    Lebret SC, Newgreen DF, Waltham MC, Price JT, Thompson EW, Ackland ML (2006) Myoepithelial molecular markers in human breast carcinoma PMC42-LA cells are induced by extracellular matrix and stromal cells. In vitro Cell Dev Biol Anim 42(10):298–307PubMedGoogle Scholar
  50. 50.
    Ackland ML, Newgreen D, Price JT, Fridman M, Waltham M, Arvanitis A, Minichiello J, Thompson EW (2003) Epidermal growth factor stimulates epithelio-mesenchymal transition in the stable human breast carcinoma cell line variant PMC42-LA. Lab Invest 83(3):435–448PubMedGoogle Scholar
  51. 51.
    Lebret SC, Newgreen DF, Thompson EW, Ackland ML (2007) Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 9(1):R19PubMedCrossRefGoogle Scholar
  52. 52.
    Thiery JP (2002) Epithelial to mesenchymal transitions in tumour progression. Nature Cancer 2:442–454CrossRefGoogle Scholar
  53. 53.
    Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–11278PubMedCrossRefGoogle Scholar
  54. 54.
    Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW, Williams ED (2005) Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 22(2):115–125PubMedCrossRefGoogle Scholar
  55. 55.
    Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C, Savagner P (2006) Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12(18):5395–5402PubMedCrossRefGoogle Scholar
  56. 56.
    Ross DT, Scherf U, Eisen MB et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235PubMedCrossRefGoogle Scholar
  57. 57.
    Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 Melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19PubMedCrossRefGoogle Scholar
  58. 58.
    Zajchowski DA, Bartholdi MF, Gong Y et al (2001) Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61(13):5168–5178PubMedGoogle Scholar
  59. 59.
    Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289PubMedCrossRefGoogle Scholar
  60. 60.
    Lombaerts M, van Wezel T, Philippo K et al (2006) E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 94(5):661–671PubMedGoogle Scholar
  61. 61.
    Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284PubMedCrossRefGoogle Scholar
  62. 62.
    Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–577PubMedCrossRefGoogle Scholar
  63. 63.
    El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (2000) Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 9(5):813–819PubMedCrossRefGoogle Scholar
  64. 64.
    Chen B, Lim RW (1997) Physical and functional interactions between the transcriptional inhibitors Id3 and ITF-2b. Evidence toward a novel mechanism regulating muscle-specific gene expression. J Biol Chem 272(4):2459–2463PubMedCrossRefGoogle Scholar
  65. 65.
    Maira SM, Wurtz JM, Wasylyk B (1996) Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif. Embo J 15(21):5849–5865PubMedGoogle Scholar
  66. 66.
    Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194(10):701–704PubMedGoogle Scholar
  67. 67.
    Gilles C, Thompson EW (1996) The epithelial to mesenchymal transition and metastatic progression in carcinoma. The Brea J 2:83–96CrossRefGoogle Scholar
  68. 68.
    Korsching E, Packeisen J, Liedtke C et al (2005) The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206(4):451–457PubMedCrossRefGoogle Scholar
  69. 69.
    Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21(20):3241–3246PubMedCrossRefGoogle Scholar
  70. 70.
    Cheng CW, Wu PE, Yu JC, Huang CS, Yue CT, Wu CW, Shen CY (2001) Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 20(29):3814–3823PubMedCrossRefGoogle Scholar
  71. 71.
    Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103(8):1631–1643PubMedCrossRefGoogle Scholar
  72. 72.
    Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209PubMedCrossRefGoogle Scholar
  73. 73.
    Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496PubMedCrossRefGoogle Scholar
  74. 74.
    Come C, Arnoux V, Bibeau F, Savagner P (2004) Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J Mammary Gland Biol Neoplasia 9(2):183–193PubMedCrossRefGoogle Scholar
  75. 75.
    Mironchik Y, Winnard PT Jr., Vesuna F et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65(23):10801–10809PubMedCrossRefGoogle Scholar
  76. 76.
    Aigner K, Descovich L, Mikula M et al (2007) The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett 581(8):1617–1624PubMedCrossRefGoogle Scholar
  77. 77.
    Turashvili G, Bouchal J, Baumforth K et al (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55PubMedCrossRefGoogle Scholar
  78. 78.
    Dupont VN, Gentien D, Oberkampf M, De Rycke Y, Blin N (2007) A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 121(5):1036–1046PubMedCrossRefGoogle Scholar
  79. 79.
    Wu X, Chen H, Parker B, Rubin E, Zhu T, Lee JS, Argani P, Sukumar S (2006) HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res 66(19):9527–9534PubMedCrossRefGoogle Scholar
  80. 80.
    Castro Alves C, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, Carneiro F, Becker KF (2007) Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 211(5):507–515PubMedCrossRefGoogle Scholar
  81. 81.
    Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67(7):3450–3460PubMedCrossRefGoogle Scholar
  82. 82.
    Chung CH, Parker JS, Ely K et al (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-{kappa}B signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66(16):8210–8218PubMedCrossRefGoogle Scholar
  83. 83.
    Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW (2007) Significance of TWIST and E-cadherin expression in the metastatic progression of prostatic cancer. Histopathology 50(5):648–658PubMedCrossRefGoogle Scholar
  84. 84.
    Uchikado Y, Natsugoe S, Okumura H, Setoyama T, Matsumoto M, Ishigami S, Aikou T (2005) Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11(3):1174–1180PubMedGoogle Scholar
  85. 85.
    Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446(7136):690–694PubMedCrossRefGoogle Scholar
  86. 86.
    Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M, Pagano JS (2007) Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 67(5):1970–1978PubMedCrossRefGoogle Scholar
  87. 87.
    Lee TK, Poon RT, Yuen AP et al (2006) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376PubMedCrossRefGoogle Scholar
  88. 88.
    Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105(3):319–326Google Scholar
  89. 89.
    Buck E, Eyzaguirre A, Barr S et al (2007) Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther 6(2):532–541PubMedCrossRefGoogle Scholar
  90. 90.
    Yang AD, Fan F, Camp ER et al (2006) Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12(14 Pt 1):4147–4153PubMedCrossRefGoogle Scholar
  91. 91.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  92. 92.
    Ross DT, Perou CM (2001) A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis Markers 17(2):99–109PubMedGoogle Scholar
  93. 93.
    Kenny PA, Lee GY, Myers CA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96PubMedCrossRefGoogle Scholar
  94. 94.
    Hugo, Ackland ML, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383Google Scholar
  95. 95.
    Thompson EW, Waltham M, Ramus SJ, Hutchins AM, Armes JE, Campbell IG, Williams ED, Thompson PR, Rae JM, Johnson MD, Clarke R (2004) LCC15-MB cells are MDA-MB-435: a review of misidentified breast and prostate cell lines. Clin Exp Metastasis 21(6):535–541PubMedCrossRefGoogle Scholar
  96. 96.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278PubMedCrossRefGoogle Scholar
  97. 97.
    Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noel A, van Roy F, Berx G, Foidart JM, Gilles C (2006) Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 25(36):4975–4985PubMedCrossRefGoogle Scholar
  98. 98.
    Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK (2004) Repression of Na, K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15(3):1364-1373PubMedCrossRefGoogle Scholar
  99. 99.
    Okubo T, Truong TK, Yu B, Itoh T, Zhao J, Grube B, Zhou D, Chen S (2001) Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail (SnaH). Cancer Res 61(4):1338–1346PubMedGoogle Scholar
  100. 100.
    Rennstam K, Jonsson G, Tanner M, Bendahl PO, Staaf J, Kapanen AI, Karhu R, Baldetorp B, Borg A, Isola J (2007) Cytogenetic characterization and gene expression profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. Cancer Genet Cytogenet 172(2):95–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • T. Blick
    • 1
  • E. Widodo
    • 2
    • 3
  • H. Hugo
    • 4
  • M. Waltham
    • 1
  • M. E. Lenburg
    • 5
    • 6
  • R. M. Neve
    • 6
  • E. W. Thompson
    • 1
    • 2
  1. 1.VBCRC Invasion and Metastasis UnitSt. Vincent’s InstituteMelbourneAustralia
  2. 2.University of Melbourne, Department of Surgery, St. Vincent’s HospitalFitzroyAustralia
  3. 3.Faculty of MedicineBrawijaya UniversityEast JavaIndonesia
  4. 4.Embryology LaboratoryMurdoch Children’s Research Institute, The Royal Children’s HospitalParkvilleAustralia
  5. 5.Department of Genetics and GenomicsBoston University School of MedicineBostonUSA
  6. 6.Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations