Clinical & Experimental Metastasis

, Volume 25, Issue 4, pp 357–369

The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival

  • Nigel P. S. Crawford
  • Renard C. Walker
  • Luanne Lukes
  • Jennifer S. Officewala
  • Robert W. Williams
  • Kent W. Hunter
Research Paper


Microarray expression signature analyses have suggested that extracellular matrix (ECM) gene dysregulation is predictive of metastasis in both mouse mammary tumorigenesis and human breast cancer. We have previously demonstrated that such ECM dysregulation is influenced by hereditary germline-encoded variation. To identify novel metastasis efficiency modifiers, we performed expression QTL (eQTL) mapping in recombinant inbred mice by characterizing genetic loci modulating metastasis-predictive ECM gene expression. Three reproducible eQTLs were observed on chromosomes 7, 17 and 18. Candidate genes were identified by correlation analyses and known associations with metastasis. Seven candidates were identified (Ndn, Pi16, Luc7l, Rrp1b, Brd4, Centd3 and Csf1r). Stable transfection of the highly metastatic Mvt-1 mouse mammary tumor cell line with expression vectors encoding each candidate modulated metastasis-predictive ECM gene expression. Implantation of these cells into mice demonstrated that candidate gene ectopic expression impacts tumor progression. Gene expression analyses facilitated the construction of a transcriptional network that we have termed the ‘Diasporin Pathway’. This pathway contains the seven candidates, as well as metastasis-predictive ECM genes and metastasis suppressors. Brd4 and Rrp1b appear to form a central node within this network, which likely is a consequence of their physical interaction with the metastasis efficiency modifier Sipa1. Furthermore, we demonstrate that the microarray gene expression signatures induced by activation of ECM eQTL genes in the Mvt-1 cell line can be used to accurately predict survival in a human breast cancer cohort. These data imply that the Diasporin Pathway may be an important nexus in tumor progression in both mice and humans.


Metastasis Mouse models Expression quantitative trait loci Gene expression Breast cancer Progression Survival 

Supplementary material


  1. 1.
    Chung CT, Carlson RW (2003) Goals and objectives in the management of metastatic breast cancer. Oncologist 8:514–520PubMedCrossRefGoogle Scholar
  2. 2.
    Guarneri V, Conte PF (2004) The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging 31(Suppl 1):S149–S161Google Scholar
  3. 3.
    Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRefGoogle Scholar
  4. 4.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  5. 5.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  6. 6.
    Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedCrossRefGoogle Scholar
  7. 7.
    Lifsted T, Le Voyer T, Williams M et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644PubMedCrossRefGoogle Scholar
  8. 8.
    Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961PubMedGoogle Scholar
  9. 9.
    Park YG, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062PubMedCrossRefGoogle Scholar
  10. 10.
    Crawford NP, Qian X, Ziogas A et al (2007) Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 3:e214PubMedCrossRefGoogle Scholar
  11. 11.
    Yang H, Rouse J, Lukes L et al (2004) Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin Exp Metastasis 21:719–735PubMedCrossRefGoogle Scholar
  12. 12.
    Yang H, Crawford N, Lukes L et al (2005) metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22:593–603PubMedCrossRefGoogle Scholar
  13. 13.
    Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13PubMedGoogle Scholar
  14. 14.
    Mucenski ML, Taylor BA, Jenkins NA et al (1986) AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 6:4236–4243PubMedGoogle Scholar
  15. 15.
    Jang MK, Mochizuki K, Zhou M et al (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19:523–534PubMedCrossRefGoogle Scholar
  16. 16.
    Farina A, Hattori M, Qin J et al (2004) Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 24:9059–9069PubMedCrossRefGoogle Scholar
  17. 17.
    Dey A, Chitsaz F, Abbasi A et al (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100:8758–8763PubMedCrossRefGoogle Scholar
  18. 18.
    Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308PubMedCrossRefGoogle Scholar
  19. 19.
    Pei XF, Noble MS, Davoli MA et al (2004) Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In vitro Cell Dev Biol Anim 40:14–21PubMedCrossRefGoogle Scholar
  20. 20.
    Bailey D (1981) Recombinant inbred strains and bilineal congenic strains. In: Fox J (ed) The mouse in biomedical research, 1st edn. Academic, New YorkGoogle Scholar
  21. 21.
    Threadgill DW, Hunter KW, Zou F et al (2004) Genetic modifiers. In: Holland EC (ed) Mouse models of human cancer, 1st edn. Wiley-Liss, New YorkGoogle Scholar
  22. 22.
    Lancaster M, Rouse J, Hunter KW (2005) Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome 16:120–126PubMedCrossRefGoogle Scholar
  23. 23.
    Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717PubMedCrossRefGoogle Scholar
  24. 24.
    Chesler EJ, Lu L, Shou S et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242PubMedCrossRefGoogle Scholar
  25. 25.
    Maruyama K, Usami M, Aizawa T et al (1991) A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun 178:291–296PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura E, Hidaka K, Kida Y et al (2004) Serine-arginine-rich nuclear protein Luc7l regulates myogenesis in mice. Gene 341:41–47PubMedCrossRefGoogle Scholar
  27. 27.
    Reeves JR, Xuan JW, Arfanis K et al (2005) Identification, purification and characterization of a novel human blood protein with binding affinity for prostate secretory protein of 94 amino acids. Biochem J 385:105–114PubMedCrossRefGoogle Scholar
  28. 28.
    Stacey TTI, Nie Z, Stewart A et al (2004) ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci 117:6071–6084CrossRefGoogle Scholar
  29. 29.
    Rohde CM, Schrum J, Lee AW (2004) A juxtamembrane tyrosine in the colony stimulating factor-1 receptor regulates ligand-induced Src association, receptor kinase function, and down-regulation. J Biol Chem 279:43448–43461PubMedCrossRefGoogle Scholar
  30. 30.
    Hu B, Wang S, Zhang Y et al (2003) A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci U S A 100:10008–10013PubMedCrossRefGoogle Scholar
  31. 31.
    Moon HE, Ahn MY, Park JA et al (2005) Negative regulation of hypoxia inducible factor-1alpha by necdin. FEBS Lett 579:3797–3801PubMedCrossRefGoogle Scholar
  32. 32.
    Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103PubMedCrossRefGoogle Scholar
  33. 33.
    Wrobel CN, Debnath J, Lin E et al (2004) Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol 165:263–273PubMedCrossRefGoogle Scholar
  34. 34.
    Lin EY, Nguyen AV, Russell RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740PubMedCrossRefGoogle Scholar
  35. 35.
    Jackson P, Marreiros A, Russell PJ (2005) KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 37:530–534PubMedCrossRefGoogle Scholar
  36. 36.
    Amirkhosravi A, Meyer T, Chang JY et al (2002) Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb Haemost 87:930–936PubMedGoogle Scholar
  37. 37.
    Salerno M, Ouatas T, Palmieri D et al (2003) Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 20:3–10PubMedCrossRefGoogle Scholar
  38. 38.
    Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194PubMedCrossRefGoogle Scholar
  39. 39.
    Crawford NP, Ziogas A, Peel DJ et al (2006) Polymorphisms of SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res 8:R16PubMedCrossRefGoogle Scholar
  40. 40.
    Itoh M, Nelson CM, Myers CA et al (2007) Rap1 integrates tissue polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res 67:4759–4766PubMedCrossRefGoogle Scholar
  41. 41.
    Retta SF, Balzac F, Avolio M (2006) Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 85:283–293PubMedCrossRefGoogle Scholar
  42. 42.
    Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357PubMedCrossRefGoogle Scholar
  43. 43.
    Bogaerts J, Cardoso F, Buyse M et al (2006) Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol 3:540–551PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nigel P. S. Crawford
    • 1
  • Renard C. Walker
    • 1
  • Luanne Lukes
    • 1
  • Jennifer S. Officewala
    • 1
  • Robert W. Williams
    • 1
    • 2
  • Kent W. Hunter
    • 1
  1. 1.Laboratory of Cancer Biology and GeneticsNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations