Advertisement

Clinical & Experimental Metastasis

, Volume 25, Issue 4, pp 377–388 | Cite as

Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases

  • Colm Morrissey
  • Lawrence D. True
  • Martine P. Roudier
  • Ilsa M. Coleman
  • Sarah Hawley
  • Peter S. Nelson
  • Roger Coleman
  • Ya-Chun Wang
  • Eva Corey
  • Paul H. Lange
  • Celestia S. Higano
  • Robert L. Vessella
Research Paper

Abstract

Our objective was to elucidate phenotypic differences between prostate cancer (PCa) liver, lymph node, and bone metastases. PCa metastases were obtained through a rapid tissue acquisition necropsy protocol. We grossly dissected metastatic foci from frozen samples and performed expression analyses using cDNA microarrays. Immunohistochemical analyses using a tissue microarray from thirty individuals with PCa metastases to lymph nodes, liver, and bone was used to confirm the gene expression changes associated with each metastatic site. Transcript alterations statistically-associated with bone metastases included increased expression of IBSP (Bone sialoprotein), F13A1 (factor XIII), and decreased expression of EFNA1 (ephrin-A1) and ANGPT2 (angiopoietin-2) when compared to liver and lymph node metastases. The metastasis-associated changes in proteins involved in coagulation and angiogenesis prompted further analysis of additional factors known to participate in the clotting cascade and blood vessel formation (angiopoitein-1, PAI-1, uPA, PAI-RBP-1 and hepsin). We also assessed tumor-associated microvessel density and distribution in liver, lymph node, and bone metastasis. Intense fibrin(ogen) and fibulin-1 staining was localized to epithelial cells at the periphery of metastatic tumors possibly to facilitate angiogenesis. The expression of hepsin, uPA, PAI-RBP1, PAI-1, and factor XIII may influence fibrinolysis and are regulated by the tumor microenvironment. The expression of angiopoietin-2 and apparent silencing of angiopoietin-1 in PCa bone, liver, and lymph node metastases may be critical for angiogenesis in this tumor type. In addition, the resulting tumor-associated microvessel density and distribution was significantly different between liver and bone metastasis possibly in response to the protein expression changes detailed above.

Keywords

Bone Angiogenesis Microvessel density Metastasis Prostate cancer 

Notes

Acknowledgments

We would sincerely like to thank the patients and their families who were willing to take part in the PCa rapid autopsy series. We would also like to thank the rapid autopsy teams, Dr. Janice Lai and Roman Gulati for their contributions to the manuscript, and Sue Hall and Deanna Gonzales for the clinical analyses. Finally, we would like to thank Dr. Joanne Heaton for the use of the PAI-RBP1 antibody. These studies were supported by the Department of Veterans Affair’s, the Department of Defense (DAMD170320033), the National Institutes of Health (PO1CA085859), (PCO41158) and (P50CA097186), the Richard M. Lucas Foundation and the Prostate Cancer Foundation.

References

  1. 1.
    Shah RB, Mehra R, Chinnaiyan AM et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216PubMedCrossRefGoogle Scholar
  2. 2.
    Roudier MP, True LD, Higano CS et al (2003) Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol 34:646–653PubMedCrossRefGoogle Scholar
  3. 3.
    Roudier MP, Corey E, True LD et al (2004) Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. Cancer Treat Res 118:311–339PubMedGoogle Scholar
  4. 4.
    Olson KB, Pienta KJ (1999) Pain management in patients with advanced prostate cancer. Oncology-New York 13:1537–1549Google Scholar
  5. 5.
    Lange PH, Vessella RL (1998) Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev 17:331–336PubMedCrossRefGoogle Scholar
  6. 6.
    Ohta S, Wada H, Nakazaki T et al (2002) Expression of tissue factor is associated with clinical features and angiogenesis in prostate cancer. Anticancer Res 22:2991–2996PubMedGoogle Scholar
  7. 7.
    Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–461PubMedCrossRefGoogle Scholar
  8. 8.
    Lind AJ, Wikstrom P, Granfors T et al (2005) Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. Prostate 62:394–399PubMedCrossRefGoogle Scholar
  9. 9.
    Wikstrom P, Stattin P, Franck-Lissbrant I et al (1998) Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37:19–29PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrer FA, Miller LJ, Andrawis RI et al (1998) Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 51:161–167PubMedCrossRefGoogle Scholar
  11. 11.
    Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8:294–300PubMedCrossRefGoogle Scholar
  12. 12.
    Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111PubMedCrossRefGoogle Scholar
  13. 13.
    McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725PubMedCrossRefGoogle Scholar
  14. 14.
    Wikstrom P, Lissbrant IF, Stattin P et al (2002) Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 51:268–275PubMedCrossRefGoogle Scholar
  15. 15.
    Anilkumar G, Barwe SP, Christiansen JJ et al (2006) Association of prostate-specific membrane antigen with caveolin-1 and its caveolae-dependent internalization in microvascular endothelial cells: implications for targeting to tumor vasculature. Microvasc Res 72:54–61PubMedCrossRefGoogle Scholar
  16. 16.
    Hawkins V, Doll D, Bumgarner R et al (1999) PEDB: the prostate expression database. Nucleic Acids Res 27:204–208PubMedCrossRefGoogle Scholar
  17. 17.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  18. 18.
    Carlinfante G, Vassiliou D, Svensson O et al (2003) Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 20:437–444PubMedCrossRefGoogle Scholar
  19. 19.
    Waltregny D, Bellahcene A, de Leval X et al (2000) Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers. J Bone Miner Res 15:834–843PubMedCrossRefGoogle Scholar
  20. 20.
    Godyna S, Diaz-Ricart M, Argraves WS (1996) Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 88:2569–2577PubMedGoogle Scholar
  21. 21.
    Sheng S (2001) The urokinase-type plasminogen activator system in prostate cancer metastasis. Cancer Metastasis Rev 20:287–296PubMedCrossRefGoogle Scholar
  22. 22.
    Heaton JH, Dlakic WM, Dlakic M et al (2001) Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the Type-1 plasminogen activator inhibitor mRNA. J Biol Chem 276:3341–3347PubMedCrossRefGoogle Scholar
  23. 23.
    Moran P, Li W, Fan B et al (2006) Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem 281:30439–30446PubMedCrossRefGoogle Scholar
  24. 24.
    Huang WC, Xie Z, Konaka H et al (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res 65:2303–2313PubMedCrossRefGoogle Scholar
  25. 25.
    Takai H, Nakayama Y, Kim DS et al (2007) Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements. J Cell Biochem 102:240–251PubMedCrossRefGoogle Scholar
  26. 26.
    Wojtukiewicz MZ, Zacharski LR, Memoli VA et al (1991) Fibrin formation on vessel walls in hyperplastic and malignant prostate tissue. Cancer 67:1377–1383PubMedCrossRefGoogle Scholar
  27. 27.
    Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–249PubMedCrossRefGoogle Scholar
  28. 28.
    Kostka G, Giltay R, Bloch W et al (2001) Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol 21:7025–7034PubMedCrossRefGoogle Scholar
  29. 29.
    Tran H, Tanaka A, Litvinovich SV et al (1995) The interaction of fibulin-1 with fibrinogen. A potential role in hemostasis and thrombosis. J Biol Chem 270:19458–19464PubMedCrossRefGoogle Scholar
  30. 30.
    Hao J, Jackson L, Calaluce R et al (2001) Investigation into the mechanism of the loss of laminin 5 (alpha3beta3gamma2) expression in prostate cancer. Am J Pathol 158:1129–1135PubMedGoogle Scholar
  31. 31.
    Quaglia A, Etessami N, Sim R et al (2005) Vascular invasion and herniation by hepatocellular carcinoma in cirrhosis: a wolf in sheep’s clothing? Arch Pathol Lab Med 129:639–644PubMedGoogle Scholar
  32. 32.
    Ustach CV, Kim HR (2005) Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol 25:6279–6288PubMedCrossRefGoogle Scholar
  33. 33.
    Magee JA, Araki T, Patil S et al (2001) Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61:5692–5696PubMedGoogle Scholar
  34. 34.
    Klezovitch O, Chevillet J, Mirosevich J et al (2004) Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6:185–195PubMedCrossRefGoogle Scholar
  35. 35.
    Usher PA, Thomsen OF, Iversen P et al (2005) Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue. Int J Cancer 113:870–880PubMedCrossRefGoogle Scholar
  36. 36.
    Cozzi PJ, Wang J, Delprado W et al (2006) Evaluation of urokinase plasminogen activator and its receptor in different grades of human prostate cancer. Hum Pathol 37:1442–1451PubMedCrossRefGoogle Scholar
  37. 37.
    Dublin E, Hanby A, Patel NK et al (2000) Immunohistochemical expression of uPA, uPAR, and PAI-1 in breast carcinoma. Fibroblastic expression has strong associations with tumor pathology. Am J Pathol 157:1219–1227PubMedGoogle Scholar
  38. 38.
    Heaton JH, Dlakic WM, Gelehrter TD (2003) Posttranscriptional regulation of PAI-1 gene expression. Thromb Haemost 89:959–966PubMedGoogle Scholar
  39. 39.
    Festuccia C, Angelucci A, Gravina GL et al (2000) Osteoblast-derived TGF-beta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int J Cancer 85:407–415PubMedCrossRefGoogle Scholar
  40. 40.
    Unlu A, Leake RE (2003) Transforming growth factor beta1 stimulates urokinase plasminogen activator system on prostate cancer cells. Int J Biol Markers 18:147–151PubMedGoogle Scholar
  41. 41.
    Brantley-Sieders DM, Fang WB, Hwang Y et al (2006) Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by epha receptor and vascular endothelial growth factor in mice. Cancer Res 66:10315–10324PubMedCrossRefGoogle Scholar
  42. 42.
    Ahmad SA, Liu W, Jung YD et al (2001) Differential expression of angiopoietin-1 and angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of angiogenesis. Cancer 92:1138–1143PubMedCrossRefGoogle Scholar
  43. 43.
    Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248PubMedCrossRefGoogle Scholar
  44. 44.
    Brubaker KD, Brown LG, Vessella RL et al (2006) Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. BMC Cancer 6:15PubMedCrossRefGoogle Scholar
  45. 45.
    Lipton A (2006) Future treatment of bone metastases. Clin Cancer Res 12:6305s–6308sPubMedCrossRefGoogle Scholar
  46. 46.
    Roudier MP, Corey E, True LD et al (2004) Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. Cancer Treat Res 118:311–339PubMedGoogle Scholar
  47. 47.
    Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583PubMedCrossRefGoogle Scholar
  48. 48.
    Sikes RA, Nicholson BE, Koeneman KS et al (2004) Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer 110:497–503PubMedCrossRefGoogle Scholar
  49. 49.
    Cifuentes N, Pickren JW (1979) Metastases from carcinoma of mammary-gland - autopsy study. J Surg Oncol 11:193–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Colm Morrissey
    • 1
    • 2
  • Lawrence D. True
    • 3
  • Martine P. Roudier
    • 1
  • Ilsa M. Coleman
    • 4
  • Sarah Hawley
    • 4
  • Peter S. Nelson
    • 4
  • Roger Coleman
    • 4
  • Ya-Chun Wang
    • 1
  • Eva Corey
    • 1
  • Paul H. Lange
    • 1
  • Celestia S. Higano
    • 5
  • Robert L. Vessella
    • 1
    • 2
  1. 1.Genitourinary Cancer Research Laboratory, Department of UrologyUniversity of WashingtonSeattleUSA
  2. 2.Puget Sound VA Medical CenterSeattleUSA
  3. 3.Department of PathologyUniversity of WashingtonSeattleUSA
  4. 4.Fred Hutchinson Cancer Research CenterSeattleUSA
  5. 5.Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations