Clinical & Experimental Metastasis

, Volume 25, Issue 4, pp 305–324 | Cite as

Stepping out of the flow: capillary extravasation in cancer metastasis

  • Fayth L. Miles
  • Freddie L. Pruitt
  • Kenneth L. van Golen
  • Carlton R. Cooper
Review Paper

Abstract

In order for cancer cells to successfully colonize a metastatic site, they must detach from the primary tumor using extracellular matrix-degrading proteases, intravasate and survive in the circulation, evade the immune response, and extravasate the vasculature to invade the target tissue parenchyma, where metastatic foci are established. Though many of the steps of metastasis are widely studied, the precise cellular interactions and molecular alterations associated with extravasation are unknown, and further study is needed to elucidate the mechanisms inherent to this process. Studies of leukocytes localized to inflamed tissue during the immune response may be used to elucidate the process of cancer extravasation, since leukocyte diapedesis through the vasculature involves critical adhesive interactions with endothelial cells, and both leukocytes and cancer cells express similar surface receptors capable of binding endothelial adhesion molecules. Thus, leukocyte extravasation during the inflammatory response has provided a model for transendothelial migration (TEM) of cancer cells. Leukocyte extravasation is characterized by a process whereby rolling mediated by cytokine-activated endothelial selectins is followed by firmer adhesions with β1 and β2 integrin subunits to an activated endothelium and subsequent diapedesis, which most likely involves activation of Rho GTPases, regulators of cytoskeletal rearrangements and motility. It is controversial whether such selectin-mediated rolling is necessary for TEM of cancer cells. However, it has been established that similar stable adhesions between tumor and endothelial cells precede cancer cell transmigration through the endothelium. Additionally, there is support for the preferential attachment of tumor cells to the endothelium and, accordingly, site-specific metastasis of cancer cells. Rho GTPases are critical to TEM of cancer cells as well, and some progress has been made in understanding the specific roles of the Rho GTPase family, though much is still unknown. As the mechanisms of cancer TEM are elucidated, new approaches to study and target metastasis may be utilized and developed.

Keywords

Invasion Extravasation Endothelial Neoplasm Leukocytes 

References

  1. 1.
    Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71PubMedGoogle Scholar
  2. 2.
    Fidler IJ (1999) Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother Pharmacol 43(Suppl):S3–S10PubMedCrossRefGoogle Scholar
  3. 3.
    Chambers AF, Naumov GN, Varghese HJ et al (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10:243–255PubMedGoogle Scholar
  4. 4.
    Langley RR, Fidler IJ (2007) Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321PubMedCrossRefGoogle Scholar
  5. 5.
    Kohn EC (1991) Invasion and metastasis: biology and clinical potential. Pharmacol Ther 52:235–244PubMedCrossRefGoogle Scholar
  6. 6.
    Tantivejkul K, Kalikin LM, Pienta KJ (2004) Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 91:706–717PubMedCrossRefGoogle Scholar
  7. 7.
    Zetter BR (1993) Adhesion molecules in tumor metastasis. Semin Cancer Biol 4:219–229PubMedGoogle Scholar
  8. 8.
    Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC (2000) Clinical targets for anti-metastasis therapy. Adv Cancer Res 79:91–121PubMedCrossRefGoogle Scholar
  9. 9.
    Stewart DA, Cooper CR, Sikes RA (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2:2PubMedCrossRefGoogle Scholar
  10. 10.
    Tonnesen MG, Anderson DC, Springer TA et al (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83:637–646PubMedCrossRefGoogle Scholar
  11. 11.
    Galdiero M, de l’Ero GC, Marcatili A (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun 65:699–707PubMedGoogle Scholar
  12. 12.
    van Wely CA, Beverley PC, Brett SJ, Britten CJ, Tite JP (1999) Expression of L-selectin on Th1 cells is regulated by IL-12. J Immunol 163:1214–1221PubMedGoogle Scholar
  13. 13.
    Wyble CW, Hynes KL, Kuchibhotla J et al (1997) TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J Surg Res 73:107–112PubMedCrossRefGoogle Scholar
  14. 14.
    Osborn L, Hession C, Tizard R et al (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211PubMedCrossRefGoogle Scholar
  15. 15.
    Rice GE, Bevilacqua MP (1989) An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246:1303–1306PubMedCrossRefGoogle Scholar
  16. 16.
    Brunk DK, Goetz DJ, Hammer DA (1996) Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J 71:2902–2907PubMedCrossRefGoogle Scholar
  17. 17.
    Simon SI, Green CE (2005) Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151–185PubMedCrossRefGoogle Scholar
  18. 18.
    Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993) Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74:541–554PubMedCrossRefGoogle Scholar
  19. 19.
    Gopalan PK, Smith CW, Lu H et al (1997) Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin. J Immunol 158:367–375PubMedGoogle Scholar
  20. 20.
    Sriramarao P, Norton CR, Borgstrom P et al (1996) E-selectin preferentially supports neutrophil but not eosinophil rolling under conditions of flow in vitro and in vivo. J Immunol 157:4672–4680PubMedGoogle Scholar
  21. 21.
    Sriramarao P, von Andrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol 153:4238–4246PubMedGoogle Scholar
  22. 22.
    von Andrian UH, Chambers JD, McEvoy LM et al (1991) Two-step model of leukocyte–endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci USA 88:7538–7542CrossRefGoogle Scholar
  23. 23.
    Simon SI, Hu Y, Vestweber D, Smith CW (2000) Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol 164:4348–4358PubMedGoogle Scholar
  24. 24.
    Simon SI, Burns AR, Taylor AD et al (1995) L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) beta 2-integrin. J Immunol 155:1502–1514PubMedGoogle Scholar
  25. 25.
    Ley K, Bullard DC, Arbones ML et al (1995) Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med 181:669–675PubMedCrossRefGoogle Scholar
  26. 26.
    Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99–108PubMedCrossRefGoogle Scholar
  27. 27.
    Zimmerman GA, Prescott SM, McIntyre TM (1992) Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 13:93–100PubMedCrossRefGoogle Scholar
  28. 28.
    Petruzzelli L, Takami M, Humes HD (1999) Structure and function of cell adhesion molecules. Am J Med 106:467–476PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14:377–386PubMedCrossRefGoogle Scholar
  30. 30.
    Zernecke A, Weber KS, Erwig LP et al (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol 166:5755–5762PubMedGoogle Scholar
  31. 31.
    McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA (2003) Cell–cell interactions: leukocyte–endothelial interactions. Curr Opin Hematol 10:150–158PubMedCrossRefGoogle Scholar
  32. 32.
    Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 147:2913–2921PubMedGoogle Scholar
  33. 33.
    Reiss Y, Engelhardt B (1999) T cell interaction with ICAM-1-deficient endothelium in vitro: transendothelial migration of different T cell populations is mediated by endothelial ICAM-1 and ICAM-2. Int Immunol 11:1527–1539PubMedCrossRefGoogle Scholar
  34. 34.
    Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152PubMedCrossRefGoogle Scholar
  35. 35.
    Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158PubMedCrossRefGoogle Scholar
  36. 36.
    Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology 86:408–415PubMedGoogle Scholar
  37. 37.
    DiVietro JA, Brown DC, Sklar LA, Larson RS, Lawrence MB (2007) Immobilized stromal cell-derived factor-1alpha triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J Immunol 178:3903–3911PubMedGoogle Scholar
  38. 38.
    Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL et al (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 29:345–355PubMedCrossRefGoogle Scholar
  39. 39.
    Reinhardt PH, Elliott JF, Kubes P (1997) Neutrophils can adhere via alpha4beta1-integrin under flow conditions. Blood 89:3837–3846PubMedGoogle Scholar
  40. 40.
    Weber C, Alon R, Moser B, Springer TA (1996) Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 134:1063–1073PubMedCrossRefGoogle Scholar
  41. 41.
    Postigo AA, Sanchez-Mateos P, Lazarovits AI, Sanchez-Madrid F, de Landazuri MO (1993) Alpha 4 beta 7 integrin mediates B cell binding to fibronectin and vascular cell adhesion molecule-1. Expression and function of alpha 4 integrins on human B lymphocytes. J Immunol 151:2471–2483PubMedGoogle Scholar
  42. 42.
    Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19PubMedCrossRefGoogle Scholar
  43. 43.
    Breviario F, Caveda L, Corada M et al (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15:1229–1239PubMedGoogle Scholar
  44. 44.
    Hordijk PL, Anthony E, Mul FP et al (1999) Vascular–endothelial–cadherin modulates endothelial monolayer permeability. J Cell Sci 112(Pt 12):1915–1923PubMedGoogle Scholar
  45. 45.
    Corada M, Mariotti M, Thurston G et al (1999) Vascular endothelial–cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820PubMedCrossRefGoogle Scholar
  46. 46.
    Corada M, Liao F, Lindgren M et al (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97:1679–1684PubMedCrossRefGoogle Scholar
  47. 47.
    Tanaka Y, Albelda SM, Horgan KJ et al (1992) CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med 176:245–253PubMedCrossRefGoogle Scholar
  48. 48.
    Piali L, Hammel P, Uherek C et al (1995) CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451–460PubMedCrossRefGoogle Scholar
  49. 49.
    Buckley CD, Doyonnas R, Newton JP et al (1996) Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 109(Pt 2):437–445PubMedGoogle Scholar
  50. 50.
    Dunon D, Piali L, Imhof BA (1996) To stick or not to stick: the new leukocyte homing paradigm. Curr Opin Cell Biol 8:714–723PubMedCrossRefGoogle Scholar
  51. 51.
    Liao F, Huynh HK, Eiroa A et al (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 182:1337–1343PubMedCrossRefGoogle Scholar
  52. 52.
    Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460PubMedCrossRefGoogle Scholar
  53. 53.
    Muller WA (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 57:523–528PubMedGoogle Scholar
  54. 54.
    Graesser D, Solowiej A, Bruckner M et al (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1–deficient mice. J Clin Invest 109:383–392PubMedGoogle Scholar
  55. 55.
    Wakelin MW, Sanz MJ, Dewar A et al (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184:229–239PubMedCrossRefGoogle Scholar
  56. 56.
    Duncan GS, Andrew DP, Takimoto H et al (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162:3022–3030PubMedGoogle Scholar
  57. 57.
    Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P (1995) The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131:1881–1891PubMedCrossRefGoogle Scholar
  58. 58.
    Montgomery AM, Becker JC, Siu CH et al (1996) Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 132:475–485PubMedCrossRefGoogle Scholar
  59. 59.
    Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv Immunol 58:345–416PubMedCrossRefGoogle Scholar
  60. 60.
    Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD (1996) Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 156:932–938PubMedGoogle Scholar
  61. 61.
    May MJ, Ager A (1992) ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon gamma, tumor necrosis factor-alpha and interleukin 1 beta. Eur J Immunol 22:219–226PubMedCrossRefGoogle Scholar
  62. 62.
    Kunkel EJ, Dunne JL, Ley K (2000) Leukocyte arrest during cytokine-dependent inflammation in vivo. J Immunol 164:3301–3308PubMedGoogle Scholar
  63. 63.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRefGoogle Scholar
  64. 64.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRefGoogle Scholar
  65. 65.
    Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12):1835–1842PubMedGoogle Scholar
  66. 66.
    Steinbauer M, Guba M, Cernaianu G et al (2003) GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term tumor development studies in immunocompetent mice. Clin Exp Metastasis 20:135–141PubMedCrossRefGoogle Scholar
  67. 67.
    Guba M, Bosserhoff AK, Steinbauer M et al (2000) Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo. Br J Cancer 83:1216–1222PubMedCrossRefGoogle Scholar
  68. 68.
    Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873PubMedGoogle Scholar
  69. 69.
    Barbera-Guillem E, Smith I, Weiss L (1992) Cancer-cell traffic in the liver. I. Growth kinetics of cancer cells after portal-vein delivery. Int J Cancer 52:974–977PubMedCrossRefGoogle Scholar
  70. 70.
    Qiu H, Orr FW, Jensen D et al (2003) Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol 162:403–412PubMedGoogle Scholar
  71. 71.
    Wang HH, McIntosh AR, Hasinoff BB et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869PubMedGoogle Scholar
  72. 72.
    Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229PubMedCrossRefGoogle Scholar
  73. 73.
    Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329PubMedCrossRefGoogle Scholar
  74. 74.
    Scherbarth S, Orr FW (1997) Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res 57:4105–4110PubMedGoogle Scholar
  75. 75.
    Schluter K, Gassmann P, Enns A et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073PubMedCrossRefGoogle Scholar
  76. 76.
    Haier J, Korb T, Hotz B, Spiegel HU, Senninger N (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7:507–514PubMedCrossRefGoogle Scholar
  77. 77.
    Cooper CR, McLean L, Walsh M et al (2000) Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res 6:4839–4847PubMedGoogle Scholar
  78. 78.
    Haq M, Goltzman D, Tremblay G, Brodt P (1992) Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 52:4613–4619PubMedGoogle Scholar
  79. 79.
    Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90:118–123PubMedCrossRefGoogle Scholar
  80. 80.
    Scott LJ, Clarke NW, George NJ et al (2001) Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer 84:1417–1423PubMedCrossRefGoogle Scholar
  81. 81.
    Glinsky VV, Glinsky GV, Rittenhouse-Olson K et al (2001) The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857PubMedGoogle Scholar
  82. 82.
    Glinskii OV, Huxley VH, Glinsky GV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527PubMedCrossRefGoogle Scholar
  83. 83.
    Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 109:1321–1330PubMedCrossRefGoogle Scholar
  84. 84.
    Guan JL, Hynes RO (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 60:53–61PubMedCrossRefGoogle Scholar
  85. 85.
    Miyake K, Medina K, Ishihara K et al (1991) A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J Cell Biol 114:557–565PubMedCrossRefGoogle Scholar
  86. 86.
    Matsuura N, Puzon-McLaughlin W, Irie A et al (1996) Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells. Am J Pathol 148:55–61PubMedGoogle Scholar
  87. 87.
    Huhtala P, Humphries MJ, McCarthy JB et al (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879PubMedCrossRefGoogle Scholar
  88. 88.
    Zeng ZZ, Jia Y, Hahn NJ et al (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 66:8091–8099PubMedCrossRefGoogle Scholar
  89. 89.
    Jia Y, Zeng ZZ, Markwart SM et al (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64:8674–8681PubMedCrossRefGoogle Scholar
  90. 90.
    Ignatoski KM, Maehama T, Markwart SM et al (2000) ERBB-2 overexpression confers PI 3′ kinase-dependent invasion capacity on human mammary epithelial cells. Br J Cancer 82:666–674PubMedCrossRefGoogle Scholar
  91. 91.
    Rokhlin OW, Cohen MB (1995) Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate 26:205–212PubMedCrossRefGoogle Scholar
  92. 92.
    Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873PubMedCrossRefGoogle Scholar
  93. 93.
    Krause T, Turner GA (1999) Are selectins involved in metastasis? Clin Exp Metastasis 17:183–192PubMedCrossRefGoogle Scholar
  94. 94.
    Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92:3038–3044PubMedCrossRefGoogle Scholar
  95. 95.
    Okada T, Okuno H, Mitsui Y (1994) A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and alpha 3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis 12:305–314PubMedCrossRefGoogle Scholar
  96. 96.
    Laferriere J, Houle F, Huot J (2004) Adhesion of HT-29 colon carcinoma cells to endothelial cells requires sequential events involving E-selectin and integrin beta4. Clin Exp Metastasis 21:257–264PubMedCrossRefGoogle Scholar
  97. 97.
    Tozeren A, Kleinman HK, Grant DS et al (1995) E-selectin-mediated dynamic interactions of breast- and colon-cancer cells with endothelial-cell monolayers. Int J Cancer 60:426–431PubMedCrossRefGoogle Scholar
  98. 98.
    Dimitroff CJ, Lechpammer M, Long-Woodward D, Kutok JL (2004) Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64:5261–5269PubMedCrossRefGoogle Scholar
  99. 99.
    Iwai K, Ishikura H, Kaji M et al (1993) Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium. Int J Cancer 54:972–977PubMedCrossRefGoogle Scholar
  100. 100.
    Khaldoyanidi SK, Glinsky VV, Sikora L et al (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134PubMedCrossRefGoogle Scholar
  101. 101.
    Tomlinson J, Wang JL, Barsky SH et al (2000) Human colon cancer cells express multiple glycoprotein ligands for E-selectin. Int J Oncol 16:347–353PubMedGoogle Scholar
  102. 102.
    Khatib AM, Auguste P, Fallavollita L et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167:749–759PubMedGoogle Scholar
  103. 103.
    Auguste P, Fallavollita L, Wang N et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792PubMedCrossRefGoogle Scholar
  104. 104.
    Kruskal JB, Azouz A, Korideck H et al (2007) Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology 243:703–711PubMedCrossRefGoogle Scholar
  105. 105.
    Satoh M, Numahata K, Kawamura S, Saito S, Orikasa S (1998) Lack of selectin-dependent adhesion in prostate cancer cells expressing sialyl Le(x). Int J Urol 5:86–91PubMedCrossRefGoogle Scholar
  106. 106.
    Cooper CR, Sikes RA, Nicholson BE et al (2004) Cancer cells homing to bone: the significance of chemotaxis and cell adhesion. Cancer Treat Res 118:291–309PubMedGoogle Scholar
  107. 107.
    Mattila P, Majuri ML, Renkonen R (1992) VLA-4 integrin on sarcoma cell lines recognizes endothelial VCAM-1. Differential regulation of the VLA-4 avidity on various sarcoma cell lines. Int J Cancer 52:918–923PubMedCrossRefGoogle Scholar
  108. 108.
    Steinbach F, Tanabe K, Alexander J et al (1996) The influence of cytokines on the adhesion of renal cancer cells to endothelium. J Urol 155:743–748PubMedCrossRefGoogle Scholar
  109. 109.
    Taichman DB, Cybulsky MI, Djaffar I et al (1991) Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1. Cell Regul 2:347–355PubMedGoogle Scholar
  110. 110.
    Tomita Y, Saito T, Saito K et al (1995) Possible significance of VLA-4 (alpha 4 beta 1) for hematogenous metastasis of renal-cell cancer. Int J Cancer 60:753–758PubMedCrossRefGoogle Scholar
  111. 111.
    Klemke M, Weschenfelder T, Konstandin MH, Samstag Y (2007) High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 212:368–374PubMedCrossRefGoogle Scholar
  112. 112.
    Wang HS, Hung Y, Su CH et al (2005) CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp Cell Res 304:116–126PubMedCrossRefGoogle Scholar
  113. 113.
    Fujisaki T, Tanaka Y, Fujii K et al (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res 59:4427–4434PubMedGoogle Scholar
  114. 114.
    Mine S, Fujisaki T, Kawahara C et al (2003) Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Exp Cell Res 288:189–197PubMedCrossRefGoogle Scholar
  115. 115.
    Okado T, Hawley RG (1995) Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. Int J Cancer 63:823–830PubMedCrossRefGoogle Scholar
  116. 116.
    Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711PubMedCrossRefGoogle Scholar
  117. 117.
    Ruiz P, Dunon D, Sonnenberg A, Imhof BA (1993) Suppression of mouse melanoma metastasis by EA-1, a monoclonal antibody specific for alpha 6 integrins. Cell Adhes Commun 1:67–81PubMedCrossRefGoogle Scholar
  118. 118.
    Hangan D, Morris VL, Boeters L et al (1997) An epitope on VLA-6 (alpha6beta1) integrin involved in migration but not adhesion is required for extravasation of murine melanoma B16F1 cells in liver. Cancer Res 57:3812–3817PubMedGoogle Scholar
  119. 119.
    Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710PubMedGoogle Scholar
  120. 120.
    Voura EB, Chen N, Siu CH (2000) Platelet–endothelial cell adhesion molecule-1 (CD31) redistributes from the endothelial junction and is not required for the transendothelial migration of melanoma cells. Clin Exp Metastasis 18:527–532PubMedCrossRefGoogle Scholar
  121. 121.
    Wang X, Ferreira AM, Shao Q, Laird DW, Sandig M (2005) Beta3 integrins facilitate matrix interactions during transendothelial migration of PC3 prostate tumor cells. Prostate 63:65–80PubMedCrossRefGoogle Scholar
  122. 122.
    Earley S, Plopper GE (2006) Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem Biophys Res Commun 350:405–412PubMedCrossRefGoogle Scholar
  123. 123.
    Abdel-Ghany M, Cheng HC, Elble RC et al (2003) The interacting binding domains of the beta(4) integrin and calcium-activated chloride channels (CLCAs) in metastasis. J Biol Chem 278:49406–49416PubMedCrossRefGoogle Scholar
  124. 124.
    Rahn JJ, Chow JW, Horne GJ et al (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22:475–483PubMedCrossRefGoogle Scholar
  125. 125.
    Yu LG, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with Thomsen–Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282:773–781PubMedCrossRefGoogle Scholar
  126. 126.
    Lewalle JM, Bajou K, Desreux J et al (1997) Alteration of interendothelial adherens junctions following tumor cell–endothelial cell interaction in vitro. Exp Cell Res 237:347–356PubMedCrossRefGoogle Scholar
  127. 127.
    Sandig M, Voura EB, Kalnins VI, Siu CH (1997) Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 38:351–364PubMedCrossRefGoogle Scholar
  128. 128.
    Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397PubMedCrossRefGoogle Scholar
  129. 129.
    Iiizumi M, Mohinta S, Bandyopadhyay S, Watabe K (2007) Tumor–endothelial cell interactions: therapeutic potential. Microvasc Res (in press)Google Scholar
  130. 130.
    Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMedCrossRefGoogle Scholar
  131. 131.
    Rinker-Schaeffer CW, O’Keefe JP, Welch DR, Theodorescu D (2006) Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res 12:3882–3889PubMedCrossRefGoogle Scholar
  132. 132.
    Sikes RA, Nicholson BE, Koeneman KS et al (2004) Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer 110:497–503PubMedCrossRefGoogle Scholar
  133. 133.
    Akedo H, Shinkai K, Mukai M, Komatsu K (1989) Potentiation and inhibition of tumor cell invasion by host cells and mediators. Invasion Metastasis 9:134–148PubMedGoogle Scholar
  134. 134.
    Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708PubMedCrossRefGoogle Scholar
  135. 135.
    Al-Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102PubMedCrossRefGoogle Scholar
  136. 136.
    Heyder C, Gloria-Maercker E, Entschladen F et al (2002) Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 128:533–538PubMedCrossRefGoogle Scholar
  137. 137.
    Li YH, Zhu C (1999) A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastasis 17:423–429PubMedCrossRefGoogle Scholar
  138. 138.
    Roetger A, Merschjann A, Dittmar T et al (1998) Selection of potentially metastatic subpopulations expressing c-erbB-2 from breast cancer tissue by use of an extravasation model. Am J Pathol 153:1797–1806PubMedGoogle Scholar
  139. 139.
    Voura EB, Sandig M, Kalnins VI, Siu C (1998) Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells. Cell Tissue Res 293:375–387PubMedCrossRefGoogle Scholar
  140. 140.
    Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803PubMedCrossRefGoogle Scholar
  141. 141.
    Chambers AF, MacDonald IC, Schmidt EE et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301PubMedCrossRefGoogle Scholar
  142. 142.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998PubMedCrossRefGoogle Scholar
  143. 143.
    Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252PubMedCrossRefGoogle Scholar
  144. 144.
    Dong C, Slattery MJ, Rank BM, You J (2002) In vitro characterization and micromechanics of tumor cell chemotactic protrusion, locomotion, and extravasation. Ann Biomed Eng 30:344–355PubMedCrossRefGoogle Scholar
  145. 145.
    Chotard-Ghodsnia R, Haddad O, Leyrat A et al (2007) Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 40:335–344PubMedCrossRefGoogle Scholar
  146. 146.
    Brandt B, Heyder C, Gloria-Maercker E et al (2005) 3D-extravasation model—selection of highly motile and metastatic cancer cells. Semin Cancer Biol 15:387–395PubMedCrossRefGoogle Scholar
  147. 147.
    Sandig M, Negrou E, Rogers KA (1997) Changes in the distribution of LFA-1, catenins, and F-actin during transendothelial migration of monocytes in culture. J Cell Sci 110(Pt 22):2807–2818PubMedGoogle Scholar
  148. 148.
    Pawlowski NA, Kaplan G, Abraham E, Cohn ZA (1988) The selective binding and transmigration of monocytes through the junctional complexes of human endothelium. J Exp Med 168:1865–1882PubMedCrossRefGoogle Scholar
  149. 149.
    Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963PubMedCrossRefGoogle Scholar
  150. 150.
    Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348 (Pt 2):241–255PubMedCrossRefGoogle Scholar
  151. 151.
    Braga VM, Del Maschio A, Machesky L, Dejana E (1999) Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22PubMedGoogle Scholar
  152. 152.
    Braga VM (2002) Cell–cell adhesion and signalling. Curr Opin Cell Biol 14:546–556PubMedCrossRefGoogle Scholar
  153. 153.
    Sahai E, Marshall CJ (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4:408–415PubMedCrossRefGoogle Scholar
  154. 154.
    Su WH, Chen HI, Jen CJ (2002) Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 100:3597–3603PubMedCrossRefGoogle Scholar
  155. 155.
    Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK (2002) The role of endothelial cell lateral junctions during leukocyte trafficking. Immunol Rev 186:57–67PubMedCrossRefGoogle Scholar
  156. 156.
    Shaw SK, Bamba PS, Perkins BN, Luscinskas FW (2001) Real-time imaging of vascular endothelial–cadherin during leukocyte transmigration across endothelium. J Immunol 167:2323–2330PubMedGoogle Scholar
  157. 157.
    Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO (1994) Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 269:12536–12540PubMedGoogle Scholar
  158. 158.
    Lyck R, Reiss Y, Gerwin N et al (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683PubMedCrossRefGoogle Scholar
  159. 159.
    Thompson PW, Randi AM, Ridley AJ (2002) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J Immunol 169:1007–1013PubMedGoogle Scholar
  160. 160.
    Etienne S, Adamson P, Greenwood J et al (1998) ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J Immunol 161:5755–5761PubMedGoogle Scholar
  161. 161.
    Takahashi K, Sasaki T, Mammoto A et al (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375PubMedCrossRefGoogle Scholar
  162. 162.
    Barreiro O, Yanez-Mo M, Serrador JM et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245PubMedCrossRefGoogle Scholar
  163. 163.
    Heiska L, Alfthan K, Gronholm M et al (1998) Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273:21893–21900PubMedCrossRefGoogle Scholar
  164. 164.
    Millan J, Ridley AJ (2005) Rho GTPases and leucocyte-induced endothelial remodelling. Biochem J 385:329–337PubMedCrossRefGoogle Scholar
  165. 165.
    Bos JL (2005) Linking Rap to cell adhesion. Curr Opin Cell Biol 17:123–128PubMedCrossRefGoogle Scholar
  166. 166.
    Alevriadou BR (2003) CAMs and Rho small GTPases: gatekeepers for leukocyte transendothelial migration. Focus on “VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration”. Am J Physiol Cell Physiol 285:C250–C252PubMedGoogle Scholar
  167. 167.
    van Wetering S, van den Berk N, van Buul JD et al (2003) VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol 285:C343–C352PubMedGoogle Scholar
  168. 168.
    Brakebusch C, Fassler R (2003) The integrin–actin connection, an eternal love affair. Embo J 22:2324–2333PubMedCrossRefGoogle Scholar
  169. 169.
    Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Cacicedo L (2005) IGF-I and vasoactive intestinal peptide (VIP) regulate cAMP-response element-binding protein (CREB)-dependent transcription via the mitogen-activated protein kinase (MAPK) pathway in pituitary cells: requirement of Rap1. J Mol Endocrinol 34:699–712PubMedCrossRefGoogle Scholar
  170. 170.
    McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR (2002) The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol 169:1365–1371PubMedGoogle Scholar
  171. 171.
    Kooistra MR, Corada M, Dejana E, Bos JL (2005) Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579:4966–4972PubMedCrossRefGoogle Scholar
  172. 172.
    Wittchen ES, Worthylake RA, Kelly P et al (2005) Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem 280:11675–11682PubMedCrossRefGoogle Scholar
  173. 173.
    Li B, Zhao WD, Tan ZM et al (2006) Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 580:4252–4260PubMedCrossRefGoogle Scholar
  174. 174.
    Kusama T, Mukai M, Tatsuta M, Nakamura H, Inoue M (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29:217–223PubMedGoogle Scholar
  175. 175.
    Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43:265–275PubMedCrossRefGoogle Scholar
  176. 176.
    Paku S, Dome B, Toth R, Timar J (2000) Organ-specificity of the extravasation process: an ultrastructural study. Clin Exp Metastasis 18:481–492PubMedCrossRefGoogle Scholar
  177. 177.
    Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRefGoogle Scholar
  178. 178.
    Uchide K, Sakon M, Ariyoshi H et al (2007) Cancer cells cause vascular endothelial cell (vEC) retraction via 12(S)HETE secretion; the possible role of cancer cell derived microparticle. Ann Surg Oncol 14:862–868PubMedCrossRefGoogle Scholar
  179. 179.
    Honn KV, Tang DG, Grossi IM et al (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9PubMedCrossRefGoogle Scholar
  180. 180.
    el-Sabban ME, Pauli BU (1991) Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J Cell Biol 115:1375–1382PubMedCrossRefGoogle Scholar
  181. 181.
    el-Sabban ME, Pauli BU (1994) Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metastasis 14:164–176PubMedGoogle Scholar
  182. 182.
    Tang DG, Honn KV (1994) Adhesion molecules and tumor metastasis: an update. Invasion Metastasis 14:109–122PubMedGoogle Scholar
  183. 183.
    Tang DG, Grossi IM, Chen YQ, Diglio CA, Honn KV (1993) 12(S)-HETE promotes tumor–cell adhesion by increasing surface expression of alpha V beta 3 integrins on endothelial cells. Int J Cancer 54:102–111PubMedCrossRefGoogle Scholar
  184. 184.
    Tang DG, Diglio CA, Honn KV (1993) 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins 45:249–267PubMedCrossRefGoogle Scholar
  185. 185.
    Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS (1999) Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 59:1592–1598PubMedGoogle Scholar
  186. 186.
    Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268:C1362–1368PubMedGoogle Scholar
  187. 187.
    Fischer S, Clauss M, Wiesnet M et al (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 276:C812–C820PubMedGoogle Scholar
  188. 188.
    Mayhan WG (1999) VEGF increases permeability of the blood–brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol 276:C1148–C1153PubMedGoogle Scholar
  189. 189.
    Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327PubMedCrossRefGoogle Scholar
  190. 190.
    Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632PubMedGoogle Scholar
  191. 191.
    Senger DR, Van de Water L, Brown LF et al (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324PubMedCrossRefGoogle Scholar
  192. 192.
    Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725PubMedCrossRefGoogle Scholar
  193. 193.
    Shijubo N, Uede T, Kon S et al (1999) Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. Am J Respir Crit Care Med 160:1269–1273PubMedGoogle Scholar
  194. 194.
    Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284PubMedCrossRefGoogle Scholar
  195. 195.
    Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338PubMedGoogle Scholar
  196. 196.
    Kebers F, Lewalle JM, Desreux J et al (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205PubMedCrossRefGoogle Scholar
  197. 197.
    Heyder C, Gloria-Maercker E, Hatzmann W, Zaenker KS, Dittmar T (2006) Visualization of tumor cell extravasation. Contrib Microbiol 13:200–208PubMedCrossRefGoogle Scholar
  198. 198.
    Vlodavsky I, Ariav Y, Atzmon R, Fuks Z (1982) Tumor cell attachment to the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix. Exp Cell Res 140:149–159PubMedCrossRefGoogle Scholar
  199. 199.
    Timpl R, Fujiwara S, Dziadek M et al (1984) Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found Symp 108:25–43PubMedGoogle Scholar
  200. 200.
    Kleinman HK, McGarvey ML, Liotta LA et al (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193PubMedCrossRefGoogle Scholar
  201. 201.
    Kramer RH, Gonzalez R, Nicolson GL (1980) Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int J Cancer 26:639–645PubMedCrossRefGoogle Scholar
  202. 202.
    Martin GR, Kleinman HK, Terranova VP, Ledbetter S, Hassell JR (1984) The regulation of basement membrane formation and cell–matrix interactions by defined supramolecular complexes. Ciba Found Symp 108:197–212PubMedGoogle Scholar
  203. 203.
    Kramer RH, Fuh GM, Karasek MA (1985) Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition into the subendothelial basement membrane. Biochemistry 24:7423–7430PubMedCrossRefGoogle Scholar
  204. 204.
    Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46:1980–1989PubMedGoogle Scholar
  205. 205.
    Vlodavsky I, Fuks Z, Ishai-Michaeli R et al (1991) Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J Cell Biochem 45:167–176PubMedCrossRefGoogle Scholar
  206. 206.
    Kramer RH, Vogel KG, Nicolson GL (1982) Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257:2678–2686PubMedGoogle Scholar
  207. 207.
    Heisel M, Laug WE, Jones PA (1983) Inhibition by bovine endothelial cells of degradation by HT-1080 fibrosarcoma cells of extracellular matrix proteins. J Natl Cancer Inst 71:1183–1187PubMedGoogle Scholar
  208. 208.
    Nakajima M, Irimura T, Nicolson GL (1988) Heparanases and tumor metastasis. J Cell Biochem 36:157–167PubMedCrossRefGoogle Scholar
  209. 209.
    Nakajima M, Irimura T, Di Ferrante D, Di Ferrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220:611–613PubMedCrossRefGoogle Scholar
  210. 210.
    Tuck AB, Chambers AF, Allan AL (2007) Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem (in press)Google Scholar
  211. 211.
    Banerji S, Wright AJ, Noble M et al (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate–protein interaction. Nat Struct Mol Biol 14:234–239PubMedCrossRefGoogle Scholar
  212. 212.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  213. 213.
    Heino J, Massague J (1989) Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem 264:21806–21811PubMedGoogle Scholar
  214. 214.
    Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79:639–651PubMedCrossRefGoogle Scholar
  215. 215.
    Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48:489–651PubMedCrossRefGoogle Scholar
  216. 216.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  217. 217.
    Kawakami-Kimura N, Narita T, Ohmori K et al (1997) Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer 75:47–53PubMedGoogle Scholar
  218. 218.
    Ponomaryov T, Peled A, Petit I et al (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106:1331–1339PubMedCrossRefGoogle Scholar
  219. 219.
    Imai K, Kobayashi M, Wang J et al (1999) Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 106:905–911PubMedCrossRefGoogle Scholar
  220. 220.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550PubMedCrossRefGoogle Scholar
  221. 221.
    Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757PubMedGoogle Scholar
  222. 222.
    Mohle R, Failenschmid C, Bautz F, Kanz L (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13:1954–1959PubMedCrossRefGoogle Scholar
  223. 223.
    Taichman RS, Cooper C, Keller ET et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837PubMedGoogle Scholar
  224. 224.
    Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC (2005) Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 65:9891–9898PubMedCrossRefGoogle Scholar
  225. 225.
    Marchesi F, Monti P, Leone BE et al (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64:8420–8427PubMedCrossRefGoogle Scholar
  226. 226.
    Parmo-Cabanas M, Bartolome RA, Wright N et al (2004) Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 294:571–580PubMedCrossRefGoogle Scholar
  227. 227.
    Choo MK, Sakurai H, Koizumi K, Saiki I (2005) Stimulation of cultured colon 26 cells with TNF-alpha promotes lung metastasis through the extracellular signal-regulated kinase pathway. Cancer Lett 230:47–56PubMedCrossRefGoogle Scholar
  228. 228.
    Wu W, Yamaura T, Murakami K et al (1999) Involvement of TNF-alpha in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol Res 11:461–469PubMedGoogle Scholar
  229. 229.
    Vanderkerken K, Vande Broek I, Eizirik DL et al (2002) Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clin Exp Metastasis 19:87–90PubMedCrossRefGoogle Scholar
  230. 230.
    Bradley JR, Pober JS (1996) Prolonged cytokine exposure causes a dynamic redistribution of endothelial cell adhesion molecules to intercellular junctions. Lab Invest 75:463–472PubMedGoogle Scholar
  231. 231.
    Sheski FD, Natarajan V, Pottratz ST (1999) Tumor necrosis factor-alpha stimulates attachment of small cell lung carcinoma to endothelial cells. J Lab Clin Med 133:265–273PubMedCrossRefGoogle Scholar
  232. 232.
    Boehme MW, Waldherr R, Kist A et al (1996) Kinetics of soluble TNF-receptors and soluble adhesion molecules ICAM-1, E-selectin and VCAM-1 under systemic rhTNF alpha therapy. Eur J Clin Invest 26:404–410PubMedCrossRefGoogle Scholar
  233. 233.
    Lafrenie RM, Podor TJ, Buchanan MR, Orr FW (1992) Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res 52:2202–2208PubMedGoogle Scholar
  234. 234.
    Kaji M, Ishikura H, Kishimoto T et al (1995) E-selectin expression induced by pancreas-carcinoma-derived interleukin-1 alpha results in enhanced adhesion of pancreas–carcinoma cells to endothelial cells. Int J Cancer 60:712–717PubMedCrossRefGoogle Scholar
  235. 235.
    Kurtzman SH, Anderson KH, Wang Y et al (1999) Cytokines in human breast cancer: IL-1alpha and IL-1beta expression. Oncol Rep 6:65–70PubMedGoogle Scholar
  236. 236.
    Narita T, Kawakami-Kimura N, Matsuura N, Hosono J, Kannagi R (1995) Corticosteroids and medroxyprogesterone acetate inhibit the induction of E-selectin on the vascular endothelium by MDA-MB-231 breast cancer cells. Anticancer Res 15:2523–2527PubMedGoogle Scholar
  237. 237.
    Khatib AM, Kontogiannea M, Fallavollita L et al (1999) Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59:1356–1361PubMedGoogle Scholar
  238. 238.
    Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7:177–189PubMedCrossRefGoogle Scholar
  239. 239.
    al-Sarireh B, Eremin O (2000) Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. J R Coll Surg Edinb 45:1–16PubMedGoogle Scholar
  240. 240.
    Gangopadhyay A, Lazure DA, Thomas P (1998) Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 16:703–712PubMedCrossRefGoogle Scholar
  241. 241.
    Aarons CB, Bajenova O, Andrews C et al (2007) Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells. Clin Exp Metastasis 24:201–209PubMedCrossRefGoogle Scholar
  242. 242.
    Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M (1986) Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 261:12665–12674PubMedGoogle Scholar
  243. 243.
    Mundy GR, Boyce B, Hughes D et al (1995) The effects of cytokines and growth factors on osteoblastic cells. Bone 17:71S–75SPubMedCrossRefGoogle Scholar
  244. 244.
    Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520PubMedCrossRefGoogle Scholar
  245. 245.
    Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337PubMedGoogle Scholar
  246. 246.
    Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435PubMedCrossRefGoogle Scholar
  247. 247.
    Wright N, de Lera TL, Garcia-Moruja C et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102:1978–1984PubMedCrossRefGoogle Scholar
  248. 248.
    Smith WB, Noack L, Khew-Goodall Y et al (1996) Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol 157:360–368PubMedGoogle Scholar
  249. 249.
    Cooper CR, Bhatia JK, Muenchen HJ et al (2002) The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines. Clin Exp Metastasis 19:25–33PubMedCrossRefGoogle Scholar
  250. 250.
    Aeed PA, Nakajima M, Welch DR (1988) The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. Int J Cancer 42:748–759PubMedCrossRefGoogle Scholar
  251. 251.
    Welch DR, Schissel DJ, Howrey RP, Aeed PA (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 86:5859–5863PubMedCrossRefGoogle Scholar
  252. 252.
    Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310:282–292PubMedCrossRefGoogle Scholar
  253. 253.
    Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822PubMedGoogle Scholar
  254. 254.
    Dong C, Slattery MJ, Liang S, Peng HH (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159PubMedGoogle Scholar
  255. 255.
    Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 288:C831–C839PubMedCrossRefGoogle Scholar
  256. 256.
    Offner FA, Schiefer J, Wirtz HC et al (1996) Tumour–cell–endothelial interactions: free radicals are mediators of melanoma-induced endothelial cell damage. Virchows Arch 428:99–106PubMedCrossRefGoogle Scholar
  257. 257.
    Paduch R, Walter-Croneck A, Zdzisinska B, Szuster-Ciesielska A, Kandefer-Szerszen M (2005) Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer. Cell Biol Int 29:497–505PubMedCrossRefGoogle Scholar
  258. 258.
    Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111:332–337PubMedCrossRefGoogle Scholar
  259. 259.
    Mastro AM, Gay CV, Welch DR (2003) The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20:275–284PubMedCrossRefGoogle Scholar
  260. 260.
    Crissman JD, Hatfield J, Schaldenbrand M, Sloane BF, Honn KV (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53:470–478PubMedGoogle Scholar
  261. 261.
    Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072PubMedGoogle Scholar
  262. 262.
    Bombeli T, Schwartz BR, Harlan JM (1998) Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 187:329–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Fayth L. Miles
    • 1
  • Freddie L. Pruitt
    • 1
  • Kenneth L. van Golen
    • 1
  • Carlton R. Cooper
    • 1
    • 2
  1. 1.Department of Biological Sciences, Center for Translational Cancer ResearchUniversity of DelawareNewarkUSA
  2. 2.Department of Biological Sciences, Center for Translational Cancer ResearchUniversity of DelawareNewarkUSA

Personalised recommendations