Clinical & Experimental Metastasis

, Volume 24, Issue 7, pp 495–502 | Cite as

A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier

  • Hamed Kargozaran
  • Sarah Y. Yuan
  • Jerome W. Breslin
  • Katherine D. Watson
  • Nathalie Gaudreault
  • Alison Breen
  • Mack H. Wu
Research Paper


Invasive cancer cells utilize matrix metalloproteinases (MMPs) to degrade the extracellular matrix and basement membrane in the process of metastasis. Among multiple members of the MMP family, the gelatinase MMP-2 has been implicated in the development and dissemination of malignancies. However, the cellular source of MMP-2 and its effect on metastatic extravasation have not been well characterized. The objective of this study was to test the hypothesis that active MMP-2 derived from endothelial cells facilitated the transmigration of breast cancer cells across the microvascular barrier. Gelatin zymography was used to assess latent and active MMP-2 production in conditioned media from MDA-MB-231 human breast cancer cells, human lung microvascular endothelial cells (HLMVEC) and co-culture of these two cells. Transmigrated cancer cells were measured during MMP-2 knockdown with siRNA and pharmacological inhibition of MMP activity with OA-HY. The results showed consistent MMP-2 secretion by the HLMVECs, whereas a low level production was seen in the MDA-MB-231 cells. Inhibition of MMP-2 expression or activity in HLMVECs significantly attenuated the transmigration of MDA-MB-231 cells across an endothelial monolayer barrier grown on a reconstituted basement membrane. The data provide evidence supporting a potential role for the endothelial production of MMPs in promoting cancer cell extravasation. We suggest that the interaction between malignant cells and peritumoral benign tissues including the vascular endothelium may serve as an important mechanism in the regulation of tumor invasion and metastasis.


Breast cancer Metastasis Microvascular barrier 



This work was supported by the NIH grants HL073324, HL061507, and HL084542.


  1. 1.
    Abeloff MD (2004) Cancer of the breast. In: Abeloff MD (ed) Clinical oncology, 3rd edn. Churchill Livingstone, New YorkGoogle Scholar
  2. 2.
    Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34PubMedCrossRefGoogle Scholar
  3. 3.
    Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. DDT 6:478–482PubMedGoogle Scholar
  4. 4.
    Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43PubMedGoogle Scholar
  5. 5.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activiates TGF-β and promotes tumor invasion and angiogenesis. Genes & Dev 14:163–176Google Scholar
  6. 6.
    Ata N, Oku T, Hattori M et al (1996) Inhibition by galloylglucose (GG6-10) of tumor invasion through extracellular matrix and gelatinase-mediated degradation of type IV collagens by metastatic tumor cells. Oncol Res 8:503–511PubMedGoogle Scholar
  7. 7.
    Elkin M, Reich R, Nagler A et al (1999) Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin Cancer Res 5:1982–1988PubMedGoogle Scholar
  8. 8.
    Zervos EE, Shafii AE, Hag M et al (1999) Matrix metalloproteinase inhibition suppresses MMP-2 activity and activation of PANC-1 cells in vitro. J Surg Res 84:162–167PubMedCrossRefGoogle Scholar
  9. 9.
    Denkert C, Siegert A, Leciere A et al (2002) An inhibitor of stress-activated MAP-kinase reduces invasion and MMP-2 expression of malignant melanoma cells. Clin Exp Metastasis 19:79–85PubMedCrossRefGoogle Scholar
  10. 10.
    Prontera C, Mariani B, Rossi C et al (1999) Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer 81:761–766PubMedCrossRefGoogle Scholar
  11. 11.
    Nozaki S, Sissons S, Chien DS et al (2003) Activity of biphenyl matrix metalloproteinase inhibitor BAY 12–9566 in a human breast cancer orthotopic model. Clin Exp Metastasis 20:407–412PubMedCrossRefGoogle Scholar
  12. 12.
    Yoneda T, Sasaki A, Dunstan C, et al (1997) Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphophonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 99:2509–2517PubMedCrossRefGoogle Scholar
  13. 13.
    Yuan SY (2000) Signal transduction pathways in enhanced microvascular permeability. Microcirc 7:395–403CrossRefGoogle Scholar
  14. 14.
    Nicolson GL (1989) Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Curr Opin Cell Biol 1:1009–1019PubMedCrossRefGoogle Scholar
  15. 15.
    Emonard H, Marcq V, Mirand C et al (1999) Inhibition of gelatinase A by oleic acid. Ann NY Acad Sci 878:647–649PubMedCrossRefGoogle Scholar
  16. 16.
    Xinbo Liao J, Thrasher B, Pelling J et al (2003) Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 144:1656–1663PubMedCrossRefGoogle Scholar
  17. 17.
    Tinsley JH, Breslin JW, Teasdale NR, Yuan SY. (2005) PKC-dependent, burn-induced adherens junction reorganization and barrier dysfunction in pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 289:L217–L223PubMedCrossRefGoogle Scholar
  18. 18.
    Breslin JW, Yuan SY (2004) Involvement of RhoA, Rho kinase in neutrophil-stimulated endothelial hyperpermeability. Am J Physiol Heart Circ Physiol 286:H1057–H1062PubMedCrossRefGoogle Scholar
  19. 19.
    Jardines L, Callans LS, Torosian MH (1993) Recurrent breast cancer: presentation, diagnosis, and treatment. Semin Oncol 20:538–547PubMedGoogle Scholar
  20. 20.
    Tester AM, Waltham M, Oh SJ et al (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658PubMedCrossRefGoogle Scholar
  21. 21.
    Ko CH, Shen SC, Lee TJ et al (2005) Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol Cancer Ther 4:281–290PubMedGoogle Scholar
  22. 22.
    Aye MM, Ma C, Lin H et al (2004) Ethanol-induced in vitro invasion of breast cancer cells: the contribution of mmp-2 by fibroblasts. Int J Cancer 112:738–746PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor PM, Woodfield RJ, Hodgkin MN et al (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A2 and 5-lipxygenase catalyzed pathway. Oncogene 21:5765–5772PubMedCrossRefGoogle Scholar
  24. 24.
    Stark AM, Anuszkiewicz B, Mentlein R et al (2007) Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol 81:39–48PubMedCrossRefGoogle Scholar
  25. 25.
    Szabo KA, Singh G (2005) Modulation of monocyte matrix metalloproteinase-2 by breast adenocarcinoma cells. Breast Cancer Res 7:R661–R668PubMedCrossRefGoogle Scholar
  26. 26.
    McKerrow JH, Bharagava V, Hansell E et al (2000) A functional proteomics screen of proteases in colorectal carcinoma. Mol Med 6:450–460PubMedGoogle Scholar
  27. 27.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  28. 28.
    Hofmann UB, Eggert AAO, Blass K et al (2005) Stromal cells as the major source for matrix metalloproteinase-2 in cutaneous melanoma. Arch Dermatol Res 297:154–160PubMedCrossRefGoogle Scholar
  29. 29.
    Tang Y, Kesavan P, Nakada MT et al (2004) Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2:73–80PubMedGoogle Scholar
  30. 30.
    Caudroy S, Polette M, Nawrocki-Raby B et al (2002) EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis 19:697–702PubMedCrossRefGoogle Scholar
  31. 31.
    Caudroy S, Polette M, Tournier JM et al (1999) Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. JHC 47:1575–1580Google Scholar
  32. 32.
    Strongin AY, Collier I, Bannikov G et al (1995) Mechanism of cell surface activation of 72-kDa Type IV collagenase. J Biol Chem 270:5331–5338PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang WG, Davies G, Martin TA et al (2006) Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int J Mol Med 17:583–590PubMedGoogle Scholar
  34. 34.
    Ueno H, Nakamura H, Inoue M et al (1997) Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 57:2055–2060PubMedGoogle Scholar
  35. 35.
    Ellerbroek SM, Stack MS. (1999) Membrane associated matrix metalloproteinases in metastasis. BioEssays 21:940–949PubMedCrossRefGoogle Scholar
  36. 36.
    Pulyaeva H, Bueno J, Polette M, Birembaut P, Sato H, Seiki M, Thompson EW (1997) MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 15:111–120PubMedCrossRefGoogle Scholar
  37. 37.
    Duffy MJ, Maguire TM, Hill A et al (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257PubMedCrossRefGoogle Scholar
  38. 38.
    Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43:265–275PubMedCrossRefGoogle Scholar
  39. 39.
    Tinsley JH, Wu MH, Ma W, Taulman AC, Yuan SY (1999) Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J Biol Chem 274:24930–24934PubMedCrossRefGoogle Scholar
  40. 40.
    Yuan SY, Wu MH, Ustinova EE, Guo M, Tinsley JH, De Lanerolle P, Xu W (2002) Myosin light chain phosphorylation in neutrophil-stimulated coronary microvascular leakage. Circ Res 90:1214–1221PubMedCrossRefGoogle Scholar
  41. 41.
    Breslin JW, Sun H, Xu W, Rodarte C, Moy AB, Wu MH, Yuan SY (2006) Involvement of ROCK-mediated endothelial tension development in neutrophil stimulated microvascular leakage. Am J Physiol Heart Circ Physiol 290:H741–H750PubMedCrossRefGoogle Scholar
  42. 42.
    Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y, Patthy L, Godeau G, Hornebeck W, Bellon G, Emonard H (2001) Inovlovement of fibronecting type II repeats in the efficient inhibition of gelatinases A and B. J Biol Chem 276:20458–20465PubMedCrossRefGoogle Scholar
  43. 43.
    Huet E, Cauchard JH, Berton A, Robinet A, Decarme M, Hornebeck W, Bellon G (2004) Inhibition of plasmin-mediated prostromelysin-1 activation by interaction of long chain unsaturated fatty acids with kringle 5. Biochem Pharmacol 67:643–654PubMedCrossRefGoogle Scholar
  44. 44.
    Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22:205–222PubMedCrossRefGoogle Scholar
  45. 45.
    Meehan WJ, Welch DR (2003) Breast cancer metastasis suppressor 1: update. Clin Exp Metastasis 20:45–50PubMedCrossRefGoogle Scholar
  46. 46.
    Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Hamed Kargozaran
    • 1
  • Sarah Y. Yuan
    • 1
  • Jerome W. Breslin
    • 1
  • Katherine D. Watson
    • 1
  • Nathalie Gaudreault
    • 1
  • Alison Breen
    • 1
  • Mack H. Wu
    • 1
  1. 1.Department of Surgery, Division of ResearchUniversity of California Davis School of MedicineSacramentoUSA

Personalised recommendations