Clinical & Experimental Metastasis

, Volume 24, Issue 2, pp 69–78

Expression of the cytoskeleton linker protein ezrin in human cancers

  • Benjamin Bruce
  • Gaurav Khanna
  • Ling Ren
  • Goran Landberg
  • Karin Jirström
  • Charles Powell
  • Alain Borczuk
  • Evan T. Keller
  • Kirk J. Wojno
  • Paul Meltzer
  • Kristin Baird
  • Andrea McClatchey
  • Anthony Bretscher
  • Stephen M. Hewitt
  • Chand Khanna
Original Paper

Abstract

Expression of the metastasis-associated protein, ezrin, in over 5,000 human cancers and normal tissues was analyzed using tissue microarray immunohistochemistry. Ezrin staining was compared between cancers and their corresponding normal tissues, between cancers of epithelial and mesenchymal origin, in the context of the putative inhibitor protein, merlin, and against clinicopathological data available for breast, lung, prostate cancers and sarcomas. Ezrin was found in most cancers and normal tissues at varying levels of intensity. In general ezrin was expressed at higher levels in sarcomas than in carcinomas. By normalizing the expression of ezrin in each cancer using ezrin expression found in the corresponding normal tissue, significant associations between ezrin were found in advancing histological grade in sarcomas (P = 0.02) and poor outcome in breast cancer (P = 0.025). Clinicopathologic associations were not changed by simultaneous assessment of ezrin and merlin in each patient sample for the cancer types examined. These data support a role for ezrin in the biology of human cancers and the need for additional studies in breast cancer and sarcoma patients that may validate ezrin as a marker of cancer progression and as a potential target for cancer therapy.

Keywords

Ezrin Merlin Immunohistochemistry Tissue microarray Biomarker Prognosis 

Supplementary material

10585_2006_9050_MOESM1_ESM.ppt (44 kb)
ESM 1 (PPT 44 kb)
10585_2006_9050_MOESM2_ESM.doc (3.1 mb)
ESM 2 (DOC 3,179 kb)

References

  1. 1.
    Gary R, Bretscher A (1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6:1061–1075PubMedGoogle Scholar
  2. 2.
    Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599PubMedCrossRefGoogle Scholar
  3. 3.
    Yu Y et al (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10:175–181PubMedCrossRefGoogle Scholar
  4. 4.
    Khanna C et al (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10:182–186PubMedCrossRefGoogle Scholar
  5. 5.
    Gautreau A, Poullet P, Louvard D Arpin M (1999) Ezrin a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96:7300–7305PubMedCrossRefGoogle Scholar
  6. 6.
    Hunter KW (2004) Ezrin, a key component in tumor metastasis. Trends Mol Med 10:201–204PubMedCrossRefGoogle Scholar
  7. 7.
    Curto M, McClatchey AI (2004) Ezrin...a metastatic detERMinant? Cancer Cell 5:113–114PubMedCrossRefGoogle Scholar
  8. 8.
    Algrain M, Turunen O, Vaheri A, Louvard D, Arpin M (1993) Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol 120:129–139PubMedCrossRefGoogle Scholar
  9. 9.
    Wan X, Mendoza A, Khanna C, Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65:2406–2411PubMedCrossRefGoogle Scholar
  10. 10.
    Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864PubMedCrossRefGoogle Scholar
  11. 11.
    Ohtani K et al (2002) Ezrin, a membrane-cytoskeletal linking protein, is highly expressed in atypical endometrial hyperplasia and uterine endometrioid adenocarcinoma. Cancer Lett 179:79–86PubMedCrossRefGoogle Scholar
  12. 12.
    Makitie T, Carpen O, Vaheri A, Kivela T (2001) Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Invest Ophthalmol Vis Sci 42:2442–2449PubMedGoogle Scholar
  13. 13.
    Martin TA, Harrison G, Mansel RE, Jiang WG (2003) The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 46:165–186PubMedGoogle Scholar
  14. 14.
    Tynninen O, Carpen O, Jaaskelainen J, Paavonen T, Paetau A (2004) Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol 30:472–477PubMedCrossRefGoogle Scholar
  15. 15.
    McClatchey AI (2003) Merlin and ERM proteins: unappreciated roles in cancer development? Nat Rev Cancer 3:877–883PubMedCrossRefGoogle Scholar
  16. 16.
    Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI (2003) NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17:1090–1100PubMedCrossRefGoogle Scholar
  17. 17.
    Nguyen R, Reczek D, Bretscher A (2001) Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J Biol Chem 276:7621–7629PubMedCrossRefGoogle Scholar
  18. 18.
    McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277PubMedCrossRefGoogle Scholar
  19. 19.
    McClatchey AI et al (1998) Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12:1121–1133PubMedGoogle Scholar
  20. 20.
    Nishizuka S et al (2003) Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res 63:5243–5250PubMedGoogle Scholar
  21. 21.
    Borczuk AC et al (2003) Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 163:1949–1960PubMedGoogle Scholar
  22. 22.
    Shah L et al (2004) Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer 101:1632–1638PubMedCrossRefGoogle Scholar
  23. 23.
    Svensson S et al (2005) ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24:4370–4379PubMedCrossRefGoogle Scholar
  24. 24.
    Rubin MA et al (2001) E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol 32:690–697PubMedCrossRefGoogle Scholar
  25. 25.
    Hewitt SM (2004) Design, construction, and use of tissue microarrays. Methods Mol Biol 264:61–72PubMedGoogle Scholar
  26. 26.
    Berryman M, Franck Z, Bretscher A (1993) Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci 105(Pt 4):1025–1043PubMedGoogle Scholar
  27. 27.
    Brown MJ et al (2003) Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102:3890–3899PubMedCrossRefGoogle Scholar
  28. 28.
    Nakamura H, Ozawa H, (1996) Immunolocalization of CD44 and the ERM family in bone cells of mouse tibiae. J Bone Miner Res 11:1715–1722PubMedCrossRefGoogle Scholar
  29. 29.
    Lach B, Gregor A, Rippstein P, Omulecka A (1999) Angiogenic histogenesis of stromal cells in hemangioblastoma: ultrastructural and immunohistochemical study. Ultrastruct Pathol 23:299–310PubMedCrossRefGoogle Scholar
  30. 30.
    Bohling T et al (1996) Ezrin expression in stromal cells of capillary hemangioblastoma. An immunohistochemical survey of brain tumors. Am J Pathol 148:367–373PubMedGoogle Scholar
  31. 31.
    Weng WH, Ahlen J, Astrom K., Lui WO, Larsson C (2005) Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin Cancer Res 11:6198–6204PubMedCrossRefGoogle Scholar
  32. 32.
    Park PC et al (2003) Transcriptional profiling of medulloblastoma in children. J Neurosurg 99:534–541PubMedCrossRefGoogle Scholar
  33. 33.
    Stokowski RP, Cox DR (2000) Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am J Hum Genet 66:873–891PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Benjamin Bruce
    • 1
    • 2
  • Gaurav Khanna
    • 1
    • 2
  • Ling Ren
    • 1
  • Goran Landberg
    • 3
  • Karin Jirström
    • 3
  • Charles Powell
    • 4
  • Alain Borczuk
    • 5
  • Evan T. Keller
    • 6
  • Kirk J. Wojno
    • 6
  • Paul Meltzer
    • 7
  • Kristin Baird
    • 7
  • Andrea McClatchey
    • 8
  • Anthony Bretscher
    • 9
  • Stephen M. Hewitt
    • 10
  • Chand Khanna
    • 1
  1. 1.Tumor and Metastasis Biology Section, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  2. 2.Howard Hughes Medical InstituteBethesdaUSA
  3. 3.Malmö University HospitalLund UniversityMalmöSweden
  4. 4.Department of MedicineColumbia University College of Physicians & SurgeonsNew YorkUSA
  5. 5.Department of PathologyColumbia University College of Physicians & SurgeonsNew YorkUSA
  6. 6.Department of Urology, School of MedicineUniversity of MichiganAnn ArborUSA
  7. 7.Cancer Genetics BranchNational Human Genome Research InstituteBethesdaUSA
  8. 8.Department of Pathology, Harvard Medical SchoolMass General Hospital Cancer CenterCharlestownUSA
  9. 9.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA
  10. 10.Tissue Array Research Program, Laboratory of Pathology, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations