Clinical & Experimental Metastasis

, Volume 24, Issue 1, pp 13–23

Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer

  • Gert G. Van den Eynden
  • Steven J. Van Laere
  • Ilse Van der Auwera
  • Leen Gilles
  • J. Lance Burn
  • Cecile Colpaert
  • Peter van Dam
  • Eric A. Van Marck
  • Luc Y. Dirix
  • Peter B. Vermeulen
Original Paper

Abstract

Introduction

Breast cancer can metastasize via lymphatic and hematogenous pathways. Hypoxia and (lymph)angiogenesis are closely related processes that play a pivotal role in the tumor progression and metastasis. The aim of this study was to compare expression of hypoxia and (lymph)angiogenesis-related genes between primary breast tumors and metastases in different tissues.

Materials and methods

A gene list of 269 hypoxia and (lymph)angiogenesis-related genes was composed and validated using Onto-Express, Pathway-express and Ingenuity software. The expression of these genes was compared in microarray data of 62 samples of primary tumors and metastases of 31 patients with breast cancer retrieved from Gene Expression Omnibus. Similarity between samples was investigated using unsupervised hierarchical clustering analysis, principal component analysis and permutation testing. Differential gene expression between primary tumors and metastases and between metastases from different organs was analyzed using Kruskall–Wallis and Mann–Whitney statistics.

Results

Unsupervised hierarchical cluster analysis demonstrated that hypoxia and (lymph)angiogenesis-related gene expression was more similar between samples from the same patient, than between samples from the same organ. Principal component analysis indicated that 22.7% and 7.0% of the total variation in the gene list was respectively patient and organ related. When differences in gene expression were studied between different organs, liver metastases seemed to differ most from the other secondary sites. Some of the best characterized molecules differentially expressed were VEGFA, PDGFRB, FGF4, TIMP1, TGFB-R1 and collagen 18A1 (precursor of endostatin). To confirm the results of these experiments at the protein level, immunohistochemical experiments were performed with antibodies for VEGFA and MMP-2.

Conclusions

Our results suggest that hypoxia and (lymph)angiogenesis-related gene expression is more dependent on the characteristics of the primary tumor than on the characteristics of the organs that bear the metastasis. However, when different organs are compared, the expression in liver metastases differs most from other metastatic sites and primary tumors, possibly due to organ-specific angiogenic and lymphangiogenic responses to metastasis-related hypoxia.

Keywords

Angiogenesis Hypoxia Breast cancer metastases 

Supplementary material

References

  1. 1.
    Bos R, van der Groep P, Greijer AE et al (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581PubMedCrossRefGoogle Scholar
  2. 2.
    Chia SK, Wykoff CC, Watson PH et al (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19(16):3660–3668PubMedGoogle Scholar
  3. 3.
    Colpaert CG, Vermeulen PB, Fox SB et al (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat 81(2):137–147PubMedCrossRefGoogle Scholar
  4. 4.
    Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37(3):535–540PubMedCrossRefGoogle Scholar
  5. 5.
    Fox SB, Leek RD, Smith K et al (1994) Tumor angiogenesis in node-negative breast carcinomas–relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 29(1):109–116PubMedCrossRefGoogle Scholar
  6. 6.
    Gasparini G, Weidner N, Bevilacqua P et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12(3):454–466PubMedGoogle Scholar
  7. 7.
    Horak ER, Leek R, Klenk N et al (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340(8828):1120–1124PubMedCrossRefGoogle Scholar
  8. 8.
    Linderholm B, Grankvist K, Wilking N et al (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18(7):1423–1431PubMedGoogle Scholar
  9. 9.
    Schindl M, Schoppmann SF, Samonigg H et al (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8(6):1831–1837PubMedGoogle Scholar
  10. 10.
    Weidner N, Semple JP, Welch WR et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8PubMedCrossRefGoogle Scholar
  11. 11.
    Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamura Y, Yasuoka H, Tsujimoto M et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91(2):125–132PubMedCrossRefGoogle Scholar
  13. 13.
    Bono P, Wasenius VM, Heikkila P et al (2004) High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 10(21):7144–7149PubMedCrossRefGoogle Scholar
  14. 14.
    Van den Eynden GG, Van der Auwera I, Van Laere SJ et al (2005) Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer. Br J Cancer 93(10):1128–1136PubMedCrossRefGoogle Scholar
  15. 15.
    Stessels F, Van den Eynden G, Van der Auwera I et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436PubMedCrossRefGoogle Scholar
  16. 16.
    Colpaert CG, Vermeulen PB, Van Beest P et al (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42(6):530–540PubMedCrossRefGoogle Scholar
  17. 17.
    Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100(26):15901–15905PubMedCrossRefGoogle Scholar
  18. 18.
    Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65(20):9155–9158PubMedCrossRefGoogle Scholar
  19. 19.
    Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96–108CrossRefGoogle Scholar
  20. 20.
    Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24(11):1656–1664PubMedCrossRefGoogle Scholar
  21. 21.
    Perreard L, Fan C, Quackenbush JF et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8(2):R23PubMedCrossRefGoogle Scholar
  22. 22.
    Dressman HK, Hans C, Bild A et al (2006) Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res 12(3 Pt 1):819–826PubMedCrossRefGoogle Scholar
  23. 23.
    Chi JT, Wang Z, Nuyten DS et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3(3):e47PubMedCrossRefGoogle Scholar
  24. 24.
    Weigelt B, Wessels LF, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93(8):924–932PubMedCrossRefGoogle Scholar
  25. 25.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  26. 26.
    Grüber MP, Coldren CD, Woolum MD et al (2006) Human lung project: evaluating variance of gene expression in the human lung. Am J Respir Cell Mol Biol 35(1):65–71PubMedCrossRefGoogle Scholar
  27. 27.
    Van Damme N, Demetter P, De Bock W et al (2005) Limited influences of chemotherapy on healthy and metastatic liver parenchyma. World J Gastroenterol 11(34):5322–5326PubMedGoogle Scholar
  28. 28.
    Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100(19):10623–10628PubMedCrossRefGoogle Scholar
  29. 29.
    Risau W (1995) Differentiation of endothelium. FASEB J 9(10):926–933PubMedGoogle Scholar
  30. 30.
    Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16(12):901–906PubMedCrossRefGoogle Scholar
  31. 31.
    Cines DB, Pollak ES, Buck CA et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561PubMedGoogle Scholar
  32. 32.
    Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668PubMedCrossRefGoogle Scholar
  33. 33.
    Girard JP, Springer TA (1995) High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 16(9):449–457PubMedCrossRefGoogle Scholar
  34. 34.
    Lacorre DA, Baekkevold ES, Garrido I et al (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103(11):4164–4172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Gert G. Van den Eynden
    • 1
  • Steven J. Van Laere
    • 1
  • Ilse Van der Auwera
    • 1
  • Leen Gilles
    • 1
  • J. Lance Burn
    • 2
  • Cecile Colpaert
    • 1
  • Peter van Dam
    • 1
  • Eric A. Van Marck
    • 1
  • Luc Y. Dirix
    • 1
  • Peter B. Vermeulen
    • 1
    • 3
  1. 1.Translational Cancer Research Group (Lab Pathology, University of Antwerp/University Hospital Antwerp, Oncology Center, General Hospital, St.-Augustinus)Wilrijk, AntwerpBelgium
  2. 2.The Liver Research GroupUniversity of SheffieldSheffieldUK
  3. 3.Department of PathologyAZ St.-AugustinusWilrijkBelgium

Personalised recommendations