Clinical & Experimental Metastasis

, Volume 22, Issue 7, pp 593–603 | Cite as

Metastasis Predictive Signature Profiles Pre-exist in Normal Tissues

  • Haiyan Yang
  • Nigel Crawford
  • Luanne Lukes
  • Richard Finney
  • Mindy Lancaster
  • Kent W. Hunter


Previous studies from our laboratory have demonstrated that metastatic propensity is significantly influenced by the genetic background upon which tumors arise. We have also established that human gene expression profiles predictive of metastasis are not only present in mouse tumors with both high and low metastatic capacity, but also correlate with genetic background. These results suggest that human metastasis-predictive gene expression signatures may be significantly driven by genetic background, rather than acquired somatic mutations. To test this hypothesis, gene expression profiling was performed on inbred mouse strains with significantly different metastatic efficiencies. Analysis of previously described human metastasis signature gene expression patterns in normal tissues permitted accurate categorization of high or low metastatic mouse genotypes. Furthermore, prospective identification of animals at high risk of metastasis was achieved by using mass spectrometry to characterize salivary peptide polymorphisms in a genetically heterogeneous population. These results strongly support the role of constitutional genetic variation in modulation of metastatic efficiency and suggest that predictive signature profiles could be developed from normal tissues in humans. The ability to identify those individuals at high risk of disseminated disease at the time of clinical manifestation of a primary cancer could have a significant impact on cancer management.


gene expression metastasis microarrays prognostics proteomics susceptibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liotta, LA, Stetler-Stevenson, WG 1993

    Principles of molecular cell biology of cancer: Cancer metastasis

    DeVita, SHVRosenberg, SA eds. Cancer: Principles & Practice of Oncology4J.B. Lippincott CoPhiladelphia, PA13449
    Google Scholar
  2. 2.
    Steeg, PS 2003Metastasis suppressors alter the signal transduction of cancer cellsNat Rev Cancer.35563CrossRefPubMedGoogle Scholar
  3. 3.
    Frankel, WN 1995Taking stock of complex trait genetics in miceTrends Genet114717CrossRefPubMedGoogle Scholar
  4. 4.
    Schadt, EE, Monks, SA, Drake, TA,  et al. 2003Genetics of gene expression surveyed in maize, mouse and manNature422297302CrossRefPubMedGoogle Scholar
  5. 5.
    Chesler, EJ, Lu, L, Shou, S,  et al. 2005Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system functionNat Genet3723342CrossRefPubMedGoogle Scholar
  6. 6.
    Bystrykh, L, Weersing, E, Dontje, B,  et al. 2005Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’Nat Genet3722532CrossRefPubMedGoogle Scholar
  7. 7.
    Hubner, N, Wallace, CA, Zimdahl, H,  et al. 2005Integrated transcriptional profiling and linkage analysis for identification of genes underlying diseaseNat Genet3724353CrossRefPubMedGoogle Scholar
  8. 8.
    Lifsted, T, Voyer, T, Williams, M,  et al. 1998Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progressionInt J Cancer776404CrossRefPubMedGoogle Scholar
  9. 9.
    Park, YG, Zhao, X, Lesueur, F,  et al. 2005Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1Nat Genet37105562PubMedGoogle Scholar
  10. 10.
    Ramaswamy, S, Ross, KN, Lander, ES,  et al. 2003A molecular signature of metastasis in primary solid tumorsNat Genet334954CrossRefPubMedGoogle Scholar
  11. 11.
    Hunter, KW, Welch, DR, Liu, ET 2003Genetic background is an important determinant of metastatic potentialNat Genet34234CrossRefPubMedGoogle Scholar
  12. 12.
    Qiu, TH, Chandramouli, GV, Hunter, KW,  et al. 2004Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human diseaseCancer Res64597381CrossRefPubMedGoogle Scholar
  13. 13.
    Bernards, R, Weinberg, RA 2002A progression puzzleNature418823CrossRefPubMedGoogle Scholar
  14. 14.
    Bedigian, HG, Copeland, NG, Jenkins, NA,  et al. 1983Emv-13 (Akv-3): a noninducible endogenous ecotropic provirus of AKR/J miceJ Virol464907PubMedGoogle Scholar
  15. 15.
    Hunter, KW, Broman, KW, Voyer, TL,  et al. 2001Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1Cancer Res61886672PubMedGoogle Scholar
  16. 16.
    Yang, H, Rouse, J, Lukes, L,  et al. 2005Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasisClin Exp Metastasis2171935CrossRefGoogle Scholar
  17. 17.
    Hedenfalk, I, Duggan, D, Chen, Y,  et al. 2001Gene-expression profiles in hereditary breast cancerN Engl J Med34453948CrossRefPubMedGoogle Scholar
  18. 18.
    Ross, DT, Scherf, U, Eisen, MB,  et al. 2000Systematic variation in gene expression patterns in human cancer cell linesNat Genet2422735PubMedGoogle Scholar
  19. 19.
    Radmacher, MD, McShane, LM, Simon, R 2002A paradigm for class prediction using gene expression profilesJ Comput Biol950511CrossRefPubMedGoogle Scholar
  20. 20.
    Dudoit, S, Fridlyand, F, Speed, T 2002Comparison of discrimination methods for classification of tumors using DNA microarraysJ Am Stat Assoc977787CrossRefGoogle Scholar
  21. 21.
    Wright, GW, Simon, RM 2003A random variance model for detection of differential gene expression in small microarray experimentsBioinformatics19244855CrossRefPubMedGoogle Scholar
  22. 22.
    Simon, R, Radmacher, MD, Dobbin, K,  et al. 2003Pitfalls in the use of DNA microarray data for diagnostic and prognostic classificationJ Natl Cancer Inst95148PubMedGoogle Scholar
  23. 23.
    Wang, J, Williams, RW, Manly, KF 2003WebQTL: web-based complex trait analysisNeuroinformatics1299308CrossRefPubMedGoogle Scholar
  24. 24.
    Lancaster, M, Rouse, J, Hunter, K 2005Modifiers for mammary tumor latency, progression and metastasis are present on mouse chromosomes 7, 9 and 17Mamm Genome161206CrossRefPubMedGoogle Scholar
  25. 25.
    Owerbach, D, Hjorth, JP 1980Inheritance of a parotid secretory protein in mice and its use in determining salivary amylase quantitative variantsGenetics9512941PubMedGoogle Scholar
  26. 26.
    Nielsen, JT, Sick, K 1975Gentic polymorphism of amylase isoenzymes in feral populations of the house mouseHereditas7927986PubMedGoogle Scholar
  27. 27.
    Kaplan, RD, Chapman, V, Ruddle, FH 1973Electrophoretic variation of alpha-amylase in two inbred strains of Mus musculusJ Hered641557PubMedGoogle Scholar
  28. 28.
    van‘t Veer, LJ, Dai, H, Vijver, MJ,  et al. 2002Gene expression profiling predicts clinical outcome of breast cancerNature4155306Google Scholar
  29. 29.
    Ye, QH, Qin, LX, Forgues, M,  et al. 2003Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learningNat Med941623CrossRefPubMedGoogle Scholar
  30. 30.
    Nowell, PC 1976The clonal evolution of tumor cell populationsScience1942328PubMedGoogle Scholar
  31. 31.
    Fidler, IJ, Kripke, ML 1977Metastasis results from preexisting variant cells within a malignant tumorScience1978935PubMedGoogle Scholar
  32. 32.
    Hunter, KW 2003Allelic diversity of the host genetic background as a determinant in tumor metastatic disseminationCancer Lett20097105CrossRefPubMedGoogle Scholar
  33. 33.
    Malins, DC, Gilman, NK, Green, VM,  et al. 2004Metastatic cancer DNA phenotype identified in normal tissues surrounding metastasizing prostate carcinomasProc Natl Acad Sci USA1011142831PubMedGoogle Scholar
  34. 34.
    Paget, S 1889The distribution of secondary growths in cancer of the breastLancet15713Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Haiyan Yang
    • 1
  • Nigel Crawford
    • 1
  • Luanne Lukes
    • 1
  • Richard Finney
    • 1
  • Mindy Lancaster
    • 1
  • Kent W. Hunter
    • 1
    • 2
  1. 1.Laboratory of Population GeneticsNational Cancer InstituteBethesdaUSA
  2. 2.Laboratory of Population GeneticsCCR/NCI/NIHBethesdaUSA

Personalised recommendations