Advertisement

Clinical & Experimental Metastasis

, Volume 22, Issue 4, pp 319–329 | Cite as

An Orthotopic Model of Human Osteosarcoma Growth and Spontaneous Pulmonary Metastasis

  • Hue H. Luu
  • Quan Kang
  • Jong Kyung Park
  • Weike Si
  • Qing Luo
  • Wei Jiang
  • Hong Yin
  • Anthony G. Montag
  • Michael A. Simon
  • Terrance D. Peabody
  • Rex C. Haydon
  • Carrie W. Rinker-Schaeffer
  • Tong-Chuan HeEmail author
Article

Abstract

Osteosarcoma is the most common primary malignancy of bone and patients often develop pulmonary metastases. In order to investigate the pathogenesis of human osteosarcoma, there is a great need to develop a clinically relevant animal model. Here we report the development of an osteosarcoma animal model using three related human osteosarcoma lines, the parental TE-85 and two derivative lines MNNG/HOS and 143B. In vitro characterization demonstrated that the 143B line had the greatest cell migration and the least cell adhesion activities among the three lines. The 143B line also exhibited the greatest ability for anchorage independent growth. When GFP-tagged osteosarcoma cells were injected into the proximal tibia of athymic mice, we found that 143B cells were highly tumorigenic and metastatic, and MNNG/HOS cells were tumorigenic but significantly less metastatic. TE85 cells were neither tumorigenic nor metastatic. The number of pulmonary metastases was found 50-fold higher in 143B injected animals than that in MNNG/HOS injected mice. No pulmonary metastases were detected in TE85 injected animals for up to 8 weeks. Primary tumors formed by MNNG/HOS and 143B cells could be visualized by whole body fluorescence imaging, while the pulmonary metastases were visualized on the necropsied samples. The GFP tagged 143B cells (and to a lesser extent, MNNG/HOS cells) were readily recovered from lung metastases. This clinically relevant model of human osteosarcoma provides varying degrees of tumor growth at the primary site and metastatic potential. Thus, this orthotopic model should be a valuable tool to investigate factors that promote or inhibit osteosarcoma growth and/or metastasis.

Key words

bone tumor metastasis primary bone tumor orthotopic animal model osteosarcoma 

Abbreviations

EMEM

minimum essential medium eagle

FCS

fetal calf serum

GFP

green fluorescent protein

hpf

high power field

PBS

phosphate buffered saline

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whelan, JS 1997OsteosarcomaEur J Cancer3316118discussion 1618–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Murphey, MD, Robbin, MR, McRae, GA,  et al. 1997The many faces of osteosarcomaRadiographics17120531PubMedGoogle Scholar
  3. 3.
    Stiller, CA, Craft, AW, Corazziari, I 2001Survival of children with bone sarcoma in Europe since 1978: Results from the EUROCARE studyEur J Cancer377606CrossRefPubMedGoogle Scholar
  4. 4.
    Solheim, OP, Saeter, G, Elomaa, I, Alvegard, TA 1992The treatment of osteosarcoma: Present trends. The Scandinavian Sarcoma Group experienceAnn Oncol 3 (Suppl)2S711Google Scholar
  5. 5.
    Mankin, HJ, Hornicek, FJ, Rosenberg, AE,  et al. 2004Survival data for 648 patients with osteosarcoma treated at one institutionClin Orthop42928691PubMedGoogle Scholar
  6. 6.
    Jaffe, N, Pearson, P, Yasko, AW,  et al. 2003Single and multiple metachronous osteosarcoma tumors after therapyCancer98245766CrossRefPubMedGoogle Scholar
  7. 7.
    Kim, SJ, Choi, JA, Lee, SH,  et al. 2004Imaging findings of extrapulmonary metastases of osteosarcomaClin Imag28291300CrossRefGoogle Scholar
  8. 8.
    Kager, L, Zoubek, A, Potschger, U,  et al. 2003Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocolsJ Clin Oncol2120118CrossRefPubMedGoogle Scholar
  9. 9.
    Link, MP, Goorin, AM, Miser, AW,  et al. 1986The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremityN Engl J Med31416006PubMedGoogle Scholar
  10. 10.
    Ward, WG, Mikaelian, K, Dorey, F,  et al. 1994Pulmonary metastases of stage IIB extremity osteosarcoma and subsequent pulmonary metastasesJ Clin Oncol12184958PubMedGoogle Scholar
  11. 11.
    Haydon, RC, Deyrup, A, Ishikawa, A,  et al. 2002Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcomaInt J Cancer10233842CrossRefPubMedGoogle Scholar
  12. 12.
    Gorlick, R, Anderson, P, Andrulis, I,  et al. 2003Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summaryClin Cancer Res9544253PubMedGoogle Scholar
  13. 13.
    Sandberg, AA, Bridge, JA 2003Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Osteosarcoma and related tumorsCancer Genet Cytogenet145130CrossRefPubMedGoogle Scholar
  14. 14.
    Hoang, BH, Kubo, T, Healey, JH,  et al. 2004Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcomaInt J Cancer10910611CrossRefPubMedGoogle Scholar
  15. 15.
    Pakos, EE, Kyzas, PA, Ioannidis, JP 2004Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysisClin Cancer Res10620814CrossRefPubMedGoogle Scholar
  16. 16.
    Feugeas, O, Guriec, N, Babin-Boilletot, A,  et al. 1996Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcomaJ Clin Oncol.1446772PubMedGoogle Scholar
  17. 17.
    Gamberi, G, Benassi, MS, Bohling, T,  et al. 1998C-myc and c-fos in human osteosarcoma: Prognostic value of mRNA and protein expressionOncology5555663CrossRefPubMedGoogle Scholar
  18. 18.
    Yokoyama, R, Schneider-Stock, R, Radig, K, Wex, T, Roessner, A 1998Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumorsPathol Res Pract19461521PubMedGoogle Scholar
  19. 19.
    Khanna, C, Prehn, J, Yeung, C,  et al. 2000An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potentialClin Exp Metast1826171CrossRefGoogle Scholar
  20. 20.
    Khanna, C, Khan, J, Nguyen, P,  et al. 2001Metastasis-associated differences in gene expression in a murine model of osteosarcomaCancer Res6137509PubMedGoogle Scholar
  21. 21.
    Khanna, C, Wan, X, Bose, S,  et al. 2004The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasisNat Med101826CrossRefPubMedGoogle Scholar
  22. 22.
    McAllister, RM, Gardner, MB, Greene, AE,  et al. 1971Cultivation in vitro of cells derived from a human osteosarcomaCancer27397402PubMedGoogle Scholar
  23. 23.
    Rhim, JS, Putman, DL, Arnstein, P,  et al. 1977Characterization of human cells transformed in vitro by N-methyl-N′-nitro-N-nitrosoguanidineInt J Cancer1950510PubMedGoogle Scholar
  24. 24.
    Hensler, PJ, Annab, LA, Barrett, JC, Pereira-Smith, OM 1994A gene involved in control of human cellular senescence on human chromosome 1qMol Cell Biol1422917PubMedGoogle Scholar
  25. 25.
    Oliver, MH, Harrison, NK, Bishop, JE, Cole, PJ, Laurent, GJ 1989A rapid and convenient assay for counting cells cultured in microwell plates: Application for assessment of growth factorsJ Cell Sci925138PubMedGoogle Scholar
  26. 26.
    Luu, HH, Zagaja, GP, Dubauskas, Z,  et al. 1998Identification of a novel metastasis-suppressor region on human chromosome 12Cancer Res5835615PubMedGoogle Scholar
  27. 27.
    Berlin, O, Samid, D, Donthineni-Rao, R,  et al. 1993Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic miceCancer Res5348905PubMedGoogle Scholar
  28. 28.
    McGary, EC, Heimberger, A, Mills, L,  et al. 2003A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivoClin Cancer Res965606PubMedGoogle Scholar
  29. 29.
    Kjonniksen, I, Winderen, M, Bruland, O, Fodstad, O 1994Validity and usefulness of human tumor models established by intratibial cell inoculation in nude ratsCancer Res5417159PubMedGoogle Scholar
  30. 30.
    Misdorp, W, Hart, AA 1979Some prognostic and epidemiologic factors in canine osteosarcomaJ Natl Cancer Inst6253745PubMedGoogle Scholar
  31. 31.
    Hahn, KA, Legendre, AM, Schuller, HM 1997Amputation and dexniguldipine as treatment for canine appendicular osteosarcomaJ Cancer Res Clin Oncol123348CrossRefPubMedGoogle Scholar
  32. 32.
    Haines, DM, Bruland, OS, Matte, G,  et al. 1992Immunoscintigraphic detection of primary and metastatic spontaneous canine osteosarcoma with F(ab’)2 fragments of osteosarcoma-associated monoclonal antibody TP-1Anticancer Res1221517PubMedGoogle Scholar
  33. 33.
    Nakano, T, Tani, M, Ishibashi, Y,  et al. 2003Biological properties and gene expression associated with metastatic potential of human osteosarcomaClin Exp Metast2066574CrossRefGoogle Scholar
  34. 34.
    Shirakawa, T, Ko, SC, Gardner, TA,  et al. 1998In vivo suppression of osteosarcoma pulmonary metastasis with intravenous osteocalcin promoter-based toxic gene therapyCancer Gene Ther527480PubMedGoogle Scholar
  35. 35.
    Lafleur, EA, Koshkina, NV, Stewart, J,  et al. 2004Increased Fas expression reduces the metastatic potential of human osteosarcoma cellsClin Cancer Res1081149CrossRefPubMedGoogle Scholar
  36. 36.
    Shah, AP, Parmar, S, O’Regan, R 2003Right atrial and ventricular thrombus infiltrated with osteoblastic osteosarcomaJ Cardiovasc Pharmacol Ther830711PubMedGoogle Scholar
  37. 37.
    Kimura, K, Nakano, T, Park, YB,  et al. 2002Establishment of human osteosarcoma cell lines with high metastatic potential to lungs and their utilities for therapeutic studies on metastatic osteosarcomaClin Exp Metast1947785CrossRefGoogle Scholar
  38. 38.
    Serra, M, Scotlandi, K, Manara, MC,  et al. 1993Establishment and characterization of multidrug-resistant human osteosarcoma cell linesAnticancer Res133239PubMedGoogle Scholar
  39. 39.
    Jia, SF, Worth, LL, Kleinerman, ES 1999A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategiesClin Exp Metast175016CrossRefGoogle Scholar
  40. 40.
    Poste, G, Fidler, IJ 1980The pathogenesis of cancer metastasisNature28313946CrossRefPubMedGoogle Scholar
  41. 41.
    Yoshida, BA, Sokoloff, MM, Welch, DR, Rinker-Schaeffer, CW 2000Metastasis-suppressor genes: A review and perspective on an emerging fieldJ Natl Cancer Inst92171730CrossRefPubMedGoogle Scholar
  42. 42.
    Welch, DR, Steeg, PS, Rinker-Schaeffer, CW 2000Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasisBreast Cancer Res240816CrossRefPubMedGoogle Scholar
  43. 43.
    Kirsch, M, Schackert, G, Black, PM 2004Metastasis and angiogenesisCancer Treat Res117285304PubMedGoogle Scholar
  44. 44.
    Folkman, J 2004Endogenous angiogenesis inhibitorsApmis112496507CrossRefPubMedGoogle Scholar
  45. 45.
    Folkman, J 2002Role of angiogenesis in tumor growth and metastasisSemin Oncol29158CrossRefGoogle Scholar
  46. 46.
    Pompetti, F, Rizzo, P, Simon, RM,  et al. 1996Oncogene alterations in primary, recurrent, and metastatic human bone tumorsJ Cell Biochem633750CrossRefPubMedGoogle Scholar
  47. 47.
    Conzelmann, M, Linnemann, U, Berger, MR 2004K-ras codon 12 and 13 mutations are correlated with differential patterns of tumor cell dissemination in colorectal cancer patientsInt J Oncol24153744PubMedGoogle Scholar
  48. 48.
    Uemura, T, Hibi, K, Kaneko, T,  et al. 2004Detection of K-ras mutations in the plasma DNA of pancreatic cancer patientsJ Gastroenterol395660CrossRefPubMedGoogle Scholar
  49. 49.
    Dieterle, CP, Conzelmann, M, Linnemann, U, Berger, MR 2004Detection of isolated tumor cells by polymerase chain reaction-restriction fragment length polymorphism for K-ras mutations in tissue samples of 199 colorectal cancer patientsClin Cancer Res1064150CrossRefPubMedGoogle Scholar
  50. 50.
    Okudela, K, Hayashi, H, Ito, T,  et al. 2004K-ras gene mutation enhances motility of immortalized airway cells and lung adenocarcinoma cells via Akt activation: possible contribution to non-invasive expansion of lung adenocarcinomaAm J Pathol16491100PubMedGoogle Scholar
  51. 51.
    Fu, Z, Smith, PC, Zhang, L,  et al. 2003Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasisJ Natl Cancer Inst9587889PubMedGoogle Scholar
  52. 52.
    Keller, ET, Fu, Z, Yeung, K, Brennan, M 2004Raf kinase inhibitor protein: a prostate cancer metastasis suppressor geneCancer Lett2071317CrossRefPubMedGoogle Scholar
  53. 53.
    Odabaei, G, Chatterjee, D, Jazirehi, AR,  et al. 2004Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosisAdv Cancer Res91169200CrossRefPubMedGoogle Scholar
  54. 54.
    Trakul, N, Rosner, MR 2005Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory proteinCell Res151923PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hue H. Luu
    • 1
  • Quan Kang
    • 1
    • 2
  • Jong Kyung Park
    • 1
    • 3
  • Weike Si
    • 1
    • 4
  • Qing Luo
    • 1
    • 2
  • Wei Jiang
    • 1
  • Hong Yin
    • 1
  • Anthony G. Montag
    • 1
    • 5
  • Michael A. Simon
    • 1
  • Terrance D. Peabody
    • 1
  • Rex C. Haydon
    • 1
  • Carrie W. Rinker-Schaeffer
    • 6
  • Tong-Chuan He
    • 1
    Email author
  1. 1.Molecular Oncology Laboratory, Department of SurgeryThe University of Chicago Medical CenterChicagoUSA
  2. 2.The Children’s Hospital of Chongqing University of Medical SciencesChongqingChina
  3. 3.Department of Surgery, St. Paul’s Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
  4. 4.Department of Clinical BiochemistryThe Third Military Medical UniversityChongqingChina
  5. 5.Department of PathologyThe University of Chicago HospitalsChicagoUSA
  6. 6.Urological Research Laboratory, Department of SurgeryThe University of Chicago Medical CenterChicago

Personalised recommendations