Clinical & Experimental Metastasis

, Volume 21, Issue 8, pp 685–697 | Cite as

Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers

  • Kathryn M. Burleson
  • Linda K. Hansen
  • Amy P. N. Skubitz


Ovarian carcinoma patients frequently develop malignant ascites containing single and aggregated tumor cells, or spheroids. Spheroids have been shown to be resistant to many therapies, but their contribution to ovarian cancer dissemination remains undetermined. We have previously shown that ascites spheroids adhere to extracellular matrix (ECM) proteins and live human mesothelial cells via β1 integrin subunits. Here, we assessed the ability of spheroids that were generated from the human ovarian carcinoma cell line NIH: OVCAR5 to disseminate and invade in vitro. Spheroids were seeded on ECM proteins for 24 h. While laminin and type IV collagen stimulated some cell migration, spheroids completely disaggregated on type I collagen substrates. A monoclonal antibody against the β1 integrin subunit significantly inhibited disaggregation on all proteins tested. To test their invasive ability, spheroids were added to monolayers of live human LP9 mesothelial cells. Within 24 h, the spheroids adhered and disaggregated on top of the monolayers, and within a week had established foci of invasion encompassing a 200-fold larger surface area. Addition of a monoclonal antibody against the β1 integrin subunit drastically reduced spheroid invasion into the mesothelial cell monolayers. GM 6001, a broad-scale matrix metalloproteinase inhibitor, also significantly blocked spheroid invasion into the mesothelial cell monolayers. ɛ-amino-N-caproic acid, a serine protease inhibitor, partially inhibited spheroid invasion. Based on their ability to attach to, disaggregate on, and invade into live human mesothelial cell monolayers, spheroids should thus be regarded as potential contributors to the dissemination of ovarian cancer.


cell adhesion molecules extracellular matrix integrins ovarian carcinoma spheroids 



bovine serum albumin


dimethyl sulfoxide


extracellular matrix


ethylenediaminetetraacetic acid




fetal bovine serum


monoclonal antibody


normal mouse immunoglobulin


matrix metalloproteinase


phosphate buffered saline


ɛ–amino-n-caproic acid


urinary-type plasminogen activator


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cannistra, SA. 1993Cancer of the ovaryClinical & Experimental Metastasis32915509Google Scholar
  2. 2.
    Feldman, GB, Knapp, RC, Order, SE,  et al. 1972The role of lymphatic obstruction in the formation of ascites in a murine ovarian carcinomaClinical & Experimental Metastasis3216636Google Scholar
  3. 3.
    Feldman, GB, Knapp, RC. 1974Lymphatic drainage of the peritoneal cavity and its significance in ovarian cancerClinical & Experimental Metastasis1199914Google Scholar
  4. 4.
    Olson, TA, Mohanraj, D, Carson, LF,  et al. 1994Vascular permeability factor gene expression in normal and neoplastic human ovariesClinical & Experimental Metastasis5427680Google Scholar
  5. 5.
    Senger, DR, Galli, SJ, Dvorak, AM,  et al. 1983Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluidClinical & Experimental Metastasis219835Google Scholar
  6. 6.
    Bardiès, M, Thedrez, P, Gestin, J-F,  et al. 1992Use of multi-cell spheroids of ovarian carcinoma as an intraperitoneal radio-immunotherapy model: Uptake, retention kinetics and dosimetric evaluationClinical & Experimental Metastasis5098491Google Scholar
  7. 7.
    Becker, JL, Prewett, TL, Spaulding, GF,  et al. 1993Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: Morphologic and embryological considerationsClinical & Experimental Metastasis512839Google Scholar
  8. 8.
    Filipovich, IV, Sorokina, NI, Robillard, N,  et al. 1997Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroidsClinical & Experimental Metastasis728519Google Scholar
  9. 9.
    Makhija, S, Taylor, DD, Gibb, RK,  et al. 1999Taxol-induced Bcl-2 phosphorylation in ovarian cancer cell monolayer and spheroidsClinical & Experimental Metastasis1451521Google Scholar
  10. 10.
    Durand, RE, Sutherland, RM. 1972Effects of intercellular contact on repair of radiation damageClinical & Experimental Metastasis717580Google Scholar
  11. 11.
    Graham, CH, Kobayashi, H, Stankiewicz, KS,  et al. 1994Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agentsClinical & Experimental Metastasis8697582Google Scholar
  12. 12.
    Sutherland, RM, McCredie, JA, Inch, WR. 1971Growth of multicell spheroids in tissue culture as a model of nodular carcinomaClinical & Experimental Metastasis4611320Google Scholar
  13. 13.
    Sutherland, RM, MacDonald, HR, Howell, RL. 1977Multicellular spheroids: A new model target for in vitro studies of immunity to solid tumor allograftsClinical & Experimental Metastasis58184953Google Scholar
  14. 14.
    Cannistra, SA, Kansas, GS, Niloff, J,  et al. 1993Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44HClinical & Experimental Metastasis5338308Google Scholar
  15. 15.
    Catterall, JB, Jones, LMH, Turner, GA. 1999Membrane protein glycosylation and CD44 content in the adhesion of human ovarian cancer cells to hyaluronanClinical & Experimental Metastasis1758391Google Scholar
  16. 16.
    Gardner, MJ, Catterall, JB, Jones, LMH,  et al. 1996Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: A possible step in peritoneal metastasisClinical & Experimental Metastasis1432534Google Scholar
  17. 17.
    Strobel, T, Cannistra, SA. 1999β integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitroClinical & Experimental Metastasis733627Google Scholar
  18. 18.
    Lessan, K, Aguiar, DJ, Oegema, T,  et al. 1999CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cellsClinical & Experimental Metastasis154152537Google Scholar
  19. 19.
    Casey, RC, Skubitz, APN. 2000CD44 and β1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteinsClinical & Experimental Metastasis186775Google Scholar
  20. 20.
    Casey, RC, Burleson, KM, Skubitz, KM,  et al. 2001β1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroidsClinical & Experimental Metastasis159207180Google Scholar
  21. 21.
    Burleson, KM, Casey, RC, Skubitz, KM,  et al. 2004Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayersClinical & Experimental Metastasis9317081Google Scholar
  22. 22.
    Davidson, B, Goldberg, I, Berner, A,  et al. 2001Expression of membrane-type 1, 2, and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusionsClinical & Experimental Metastasis11551724Google Scholar
  23. 23.
    Sakata, K, Shigemasa, K, Uebaba, Y,  et al. 2001Expression of matrix metalloproteinases-2 and −9 by cells isolated from the peritoneal fluid of women with ovarian carcinomaClinical & Experimental Metastasis46697703Google Scholar
  24. 24.
    Young, TN, Rodriguez, GC, Moser, TL,  et al. 1994Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epitheliumClinical & Experimental Metastasis170128596Google Scholar
  25. 25.
    Karlan, BY, Amin, W, Band, V,  et al. 1988Plasminogen activator secretion by established lines of human ovarian carcinoma cells in vitroClinical & Experimental Metastasis3110312Google Scholar
  26. 26.
    Smith, DE, Mosher, DF, Johnson, RB,  et al. 1982Immunological identification of two sulfhydryl-containing fragments of human plasma fibronectinClinical & Experimental Metastasis5758318Google Scholar
  27. 27.
    Hamilton, TC, Young, RC, Ozols, RF. 1984Experimental model systems of ovarian cancer: Applications to the design and evaluation of new treatment approachesClinical & Experimental Metastasis1128598Google Scholar
  28. 28.
    Molpus, KL, Koelliker, D, Atkins, L,  et al. 1996Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastasis in miceClinical & Experimental Metastasis6758895Google Scholar
  29. 29.
    Fassett, JT, Tobolt, D, Nelson, CJ,  et al. 2003The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G1-S progression in rat hepatocytesClinical & Experimental Metastasis781691700Google Scholar
  30. 30.
    Turley, EA. 1992Molecular mechanisms of cell motilityClinical & Experimental Metastasis1113Google Scholar
  31. 31.
    Liotta, LA, Rao, CN, Wewer, UM. 1986Biochemical interactions of tumor cells with the basement membraneClinical & Experimental Metastasis55103757Google Scholar
  32. 32.
    Ellerbroek, SM, Wu, YI, Overall, CM,  et al. 2001Functional interplay between type I collagen and cell surface matrix metalloproteinase activityClinical & Experimental Metastasis2762483342Google Scholar
  33. 33.
    Fishman, DA, Kearns, A, Chilukuri, K,  et al. 1998Metastatic dissemination of human ovarian epithelial carcinoma is promoted by α2β1-intgrin-mediated interaction with type I collagenClinical & Experimental Metastasis181526Google Scholar
  34. 34.
    Hart, IR, Saini, A. 1992Biology of tumor metastasisClinical & Experimental Metastasis33914537Google Scholar
  35. 35.
    Fishman, DA, Bafetti, LM, Banionis, S,  et al. 1997Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovarian carcinoma cellsClinical & Experimental Metastasis80145763Google Scholar
  36. 36.
    Naylor, MS, Stamp, GW, Davies, BD,  et al. 1994Expression and activity of MMPs and their regulators in ovarian cancerClinical & Experimental Metastasis58506Google Scholar
  37. 37.
    Hamilton TC. Ovarian Cancer, Part I: Biology. Curr Probl Cancer 1992; January/February: 1–57.Google Scholar
  38. 38.
    Sutherland, RM. 1988Cell and environment interactions in tumor microregions: The multicell spheroid modelClinical & Experimental Metastasis24017784Google Scholar
  39. 39.
    Frankel, A, Buckman, R, Kerbel, RS. 1997Abrogation of Taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroidsClinical & Experimental Metastasis57238893Google Scholar
  40. 40.
    Chintala, SK, Gokaslan, ZL, Go, Y,  et al. 1996Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitroClinical & Experimental Metastasis1435866Google Scholar
  41. 41.
    Chintala, SK, Sawaya, R, Gokaslan, ZL,  et al. 1996The effect of type III collagen on migration and invasion of human glioblastoma cell lines in vitroClinical & Experimental Metastasis1025763Google Scholar
  42. 42.
    Deryugina, EI, Bourdon, MA. 1996Tenascin mediates human glioma cell migration and modulates cell migration on fibronectinClinical & Experimental Metastasis10964352Google Scholar
  43. 43.
    Goldbrunner, RH, Haugland, HK, Klein, CE,  et al. 1996ECM dependent and integrin mediated tumor cell migration of humanglioma and melanoma cell lines under serum-free conditionsClinical & Experimental Metastasis16367988Google Scholar
  44. 44.
    Offner, FA, Bigalke, I, Schiefer, J,  et al. 1992Interaction of human malignant melanoma tumor spheroids with endothelium and reconstituted basement membrane: Modulation by RGDSClinical & Experimental Metastasis5450612Google Scholar
  45. 45.
    Kawano, K, Kantak, SS, Murai, M,  et al. 2001Integrin α3β1 engagement disrupts intercellular adhesionClinical & Experimental Metastasis26218096Google Scholar
  46. 46.
    Moser, TL, Pizzo, SV, Bafetti, LM,  et al. 1996Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the α2β1 integrinClinical & Experimental Metastasis67695701Google Scholar
  47. 47.
    Casey, RC, Koch, KA, Oegema, TR,Jr.,  et al. 2003Establishment of an in vitro assay to measure invasion of ovarian carcinoma cells through mesothelial cell monolayersClinical & Experimental Metastasis2034356Google Scholar
  48. 48.
    Stack, MS, Ellerbroek, SM, Fishman, DA. 1998The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma (Review)Clinical & Experimental Metastasis1256976Google Scholar
  49. 49.
    Ma, C, Tarnuzzer, RW, Chegini, N. 1999Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in mesothelial cells and their regulation by transforming growth factor-β1Clinical & Experimental Metastasis747785Google Scholar
  50. 50.
    Shibata, K, Kikkawa, F, Nawa, A,  et al. 1997Increased matrix metalloproteinase-9 activity in human ovarian cancer cells cultured with conditioned media from human peritoneal tissuesClinical & Experimental Metastasis156129Google Scholar
  51. 51.
    Zhu, Z, Yao, J, Wang, F,  et al. 2002TNF-α and the phenotypic transformation of human peritoneal mesothelial cellClinical & Experimental Metastasis155137Google Scholar
  52. 52.
    Rieppi, M, Vergani, V, Gatto, C,  et al. 1999Mesothelial cells induce the motility of human ovarian carcinoma cellsClinical & Experimental Metastasis803037Google Scholar
  53. 53.
    Hantke, B, Harbeck, N, Schmalfeldt, B,  et al. 2003Clinical relevance of matrix metalloproteinase-13 determined with a new highly specific and sensitive ELISA in ascitic fluid of advanced ovarian carcinoma patientsClinical & Experimental Metastasis3884124751Google Scholar
  54. 54.
    Mills, GB, May, C, Hill, M,  et al. 1990Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cellsClinical & Experimental Metastasis868515Google Scholar
  55. 55.
    Westermann, AM, Beijnen, JH, Moolenaar, WH,  et al. 1997Growth factors in human ovarian cancerClinical & Experimental Metastasis311331Google Scholar
  56. 56.
    Westermann, AM, Havik, E, Postma, FR,  et al. 1998Malignant effusions contain lysophosphatidic acid (LPA)-like activityClinical & Experimental Metastasis943742Google Scholar
  57. 57.
    Davidson, B. 2001Ovarian carcinoma and serous effusionsClinical & Experimental Metastasis2310728Google Scholar
  58. 58.
    Skubitz, APN, Campbell, KD, Goueli, S,  et al. 1998Association of beta 1 integrin with protein kinase activity in large detergent resistant complexesClinical & Experimental Metastasis42638691Google Scholar
  59. 59.
    Ellerbroek, SM, Fishman, DA, Kearns, A,  et al. 1999Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type I matrix metalloproteinase through β1 integrinClinical & Experimental Metastasis59163541Google Scholar
  60. 60.
    Davidson, B, Reich, R, Berner, A,  et al. 2001Ovarian carcinoma cells in serous effusions show altered MMP-2 and TIMP-2 mRNA levelsClinical & Experimental Metastasis720409Google Scholar
  61. 61.
    Davidson, B, Goldberg, I, Reich, R,  et al. 2003αv- and β1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patientsClinical & Experimental Metastasis9024857Google Scholar
  62. 62.
    Davidson, B, Goldberg, I, Gotlieb, WH,  et al. 2003Coordinated expression of integrin subunits, matrix metalloproteinases (MMP), angiogenic genes and Ets transcription factors in advanced-stage ovarian carcinoma: A possible activation pathway?Clinical & Experimental Metastasis200310315Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kathryn M. Burleson
    • 1
  • Linda K. Hansen
    • 1
  • Amy P. N. Skubitz
    • 1
  1. 1.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations