Advertisement

Clinical & Experimental Metastasis

, Volume 21, Issue 6, pp 535–541 | Cite as

LCC15-MB Cells are MDA-MB-435: A Review of Misidentified Breast and prostate cell lines

  • Erik W. Thompson
  • Mark Waltham
  • Susan J. Ramus
  • Anne-Marie Hutchins
  • Jane E. Armes
  • Ian G. Campbell
  • Elizabeth D. Williams
  • Phillip R. Thompson
  • James M. Rae
  • Michael D. Johnson
  • Robert Clarke
Article

Abstract

Current stocks of the LCC15-MB cell line, which we originally isolated from a human breast-bone metastasis, were found to be genetically matched to the MDA-MB-435 cell line from the Lombardi Cancer Center (MDA-MB-435-LCC) using comparative genomic hybridisation, DNA microsatellite analysis and chromosomal number. LCC15-MB stocks used for our previously published studies as well as the earliest available LCC15-MB cells also showed identity to MDA-MB-435-LCC cells. The original karyotype reported for LCC15-MB cells was considerably different to that of MDA-MB-435 cells, indicating that the original LCC15-MB cells were lost to contamination by MDA-MB-435-LCC cells. Chromosome number is the simplest test to distinguish original LCC15-MB cells (n ∼ 75) from MDA-MB-435 (n ∼ 52). Collectively, our results prove that LCC15-MB cells currently available are MDA-MB-435 cells and we suggest their re-designation as MDA-MB-435-LCC15 cells. We also review the known misclassification of breast and prostate cancer cell lines to date and have initiated a register maintained at http//www.svi.edu.au/cell_lines_registry.doc.

breast cancer cell lines chromosomal number LCC15-MB MDA-MB-435 microsatellite analysis misidentification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sung V, Gilles C, Murray A et al. The LCC15-MB humanbreast cancer cell line expresses osteopontin and exhibits aninvasive and metastatic phenotype. Exp Cell Res 1998; 241(2): 273–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson EW, Sung V, Lavigne M et al. LCC15-MB: A vi-mentin-positive human breast cancer cell line from a femoralbone metastasis. Clin Exp Metast 1999; 17(3): 193–204.CrossRefGoogle Scholar
  3. 3.
    Clarke R, Leonessa F, Brunner N, Thompson EW. In vitromodels of human breast cancer. In Harris JR, Lippman ME, Morrow M, Hellman S (eds): Diseases of the Breast. Philadelphia: Lippincott 1995.Google Scholar
  4. 4.
    Ackland ML, Newgreen D, Price JT et al. Epidermal growthfactor stimulates epithelio–mesenchymal transition in the stablehuman breast carcinoma cell line variant PMC42-LA. Lab Invest 2003; 83(3): 435–48.PubMedGoogle Scholar
  5. 5.
    Thompson EW, Paik S, Brunner N et al. Association ofincreased basement membrane invasiveness with absence ofestrogen receptor and expression of vimentin in human breastcancer cell lines. J Cell Physiol 1992; 150(3): 534–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Holst-Hansen C, Johannessen B, Hoyer-Hansen et al Uroki-nase-type plasminogen activation in three human breast cancercell lines correlates with their in vitro invasiveness. Clin ExpMetast 1996; 14(3): 297–307.Google Scholar
  7. 7.
    Cailleau R, Olive M, Cruciger QV. Long-term human breastcarcinoma cell lines of metastatic origin: Preliminary character-ization. In Vitro 1978; 14(11): 911–15.Google Scholar
  8. 8.
    Leonessa F, Green D, Licht T et al. MDA435/LCC6 andMDA435/LCC6MDR1: Ascites models of human breast cancer. Br J Cancer 1996; 73(2): 154–61.PubMedGoogle Scholar
  9. 9.
    Kallioniemi OP, Kallioniemi A, Piper J et al. Optimizing com-parative genomic hybridization for analysis of DNA sequencecopy number changes in solid tumors. Genes ChromosomesCancer 1994; 10(4): 231–43.Google Scholar
  10. 10.
    Allen DG, White DJ, Hutchins AM et al. Progressive geneticaberrations detected by comparative genomic hybridization insquamous cell cervical cancer. Br J Cancer 2000; 83(12): 1659–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Satya-Prakash KL, Pathak S, Hsu TC et al. Cytogenetic analy-sis on eight human breast tumor cell lines: high frequencies of1q, 11q and HeLa-like marker chromosomes. Cancer GenetCytogenet 1981; 3(1): 61–73.CrossRefGoogle Scholar
  12. 12.
    Price JE, Fabra A, Zhang RD et al. Characterization of vari-ants of a human breast cancer cell line isolated from metastasesin different organs of nude mice. Int J Oncol 1994; 5: 459–67.Google Scholar
  13. 13.
    Bae SN, Arand G, Azzam H et al. Molecular and cellular anal-ysis of basement membrane invasion by human breast cancercells in matrigel-based in vitro assays. Breast Cancer Res Treat1993; 24(3): 241–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Markovic O, Markovic N. Cell cross-contamination in cell cultures: the silent and neglected danger. In Vitro Cell Dev BiolAnim 1998; 34(1): 1–8.Google Scholar
  15. 15.
    Walker JR. Identification and misidentification of the chromo-somes of heteroploid cell lines. J Natl Cancer Inst 1973; 51(4): 1113–5.PubMedGoogle Scholar
  16. 16.
    MacLeod RA, Dirks WG, Matsuo Y et al. Widespread intra-species cross-contamination of human tumor cell lines arising at source. Int J Cancer 1999; 83(4): 555–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Rae JM, Cordero KE, Scheys JO et al. Genotyping for poly-morphic drug metabolizing enzymes from para. n-embeddedand immunohistochemically stained tumor samples. Pharmaco-genetics 2003; 13(8): 501–7.Google Scholar
  18. 18.
    Osborne CK, Hobbs K, Trent JM. Biological differences amongMCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat 1987; 9(2): 111–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Scudiero DA, Monks A, Sausville EA. Cell line designationchange: multidrug-resistant cell line in the NCI anticancerscreen. J Natl Cancer Inst 1998; 90(11): 862.PubMedGoogle Scholar
  20. 20.
    Devarajan E, Chen J, Multani AS et al. Human breast cancerMCF-7 cell line contains inherently drug-resistant subcloneswith distinct genotypic and phenotypic features. Int J Oncol2002; 20(5): 913–20.PubMedGoogle Scholar
  21. 21.
    Gaffney EV. A cell line (HBL-100) established from human breast milk. Cell Tissue Res 1982; 227(3): 563–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Ross DT, Scherf U, Eisen MB et al. Systematic variation ingene expression patterns in human cancer cell lines. Nat Genet 2000; 24(3): 227–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee H, Lin EC, Liu L, Smith JW. Gene expression pro ling oftumor xenografts: In vivo analysis of organ-speci c metastasis. Int J Cancer 2003; 107(4): 528–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Ellison G, Klinowska T, Westwood RF et al. Further evidenceto support the melanocytic origin of MDA-MB-435. Mol Pathol 2002; 55(5): 294–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Jessani N, Liu Y, Humphrey M, Cravatt BF. Enzyme activitypro les of the secreted and membrane proteome that depictcancer cell invasiveness. Proc Natl Acad Sci USA 2002; 99(16): 10335–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Sellappan S, Grijalva R, Zhou X et al. Lineage in delity ofMDA-MB-435 cells: expression of melanocyte proteins in abreast cancer cell line. Cancer Res 2004; 64(10): 3479–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Stone KR, Mickey DD, Wunderli H et al. Isolation of a humanprostate carcinoma cell line (DU 145). Int J Cancer 1978; 21(3): 274–81.PubMedGoogle Scholar
  28. 28.
    Kaighn ME, Narayan KS, Ohnuki Y et al. Establishment andcharacterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979; 17(1): 16–23.PubMedGoogle Scholar
  29. 29.
    Horoszewicz JS, Leong SS, Kawinski E et al. LNCaP modelof human prostatic carcinoma. Cancer Res 1983; 43(4): 1809–18.PubMedGoogle Scholar
  30. 30.
    van Bokhoven A, Varella-Garcia M, Korch C et al. Widelyused prostate carcinoma cell lines share common origins. Prostate 2001; 47(1): 36–51.PubMedCrossRefGoogle Scholar
  31. 31.
    van Bokhoven A, Varella-Garcia M, Korch C, Miller GJ. TSU-Pr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cellsand are not of prostatic origin. Cancer Res 2001; 61(17): 6340–4.PubMedGoogle Scholar
  32. 32.
    O' Toole CM, Povey S, Hepburn P, Franks LM. Identity ofsome human bladder cancer cell lines. Nature 1983; 301(5899): 429–30.CrossRefGoogle Scholar
  33. 33.
    Masters JR, Bedford P, Kearney A et al. Bladder cancer cellline cross-contamination: Identi cation using a locus-speci cminisatellite probe. Br J Cancer 1988; 57(3): 284–6.PubMedGoogle Scholar
  34. 34.
    Christensen B, Hansen C, Debiec-Rychter M et al. Identityof tumorigenic human urothelial cell lines and 'spontane-ously' transformed sublines. Br J Cancer 1993; 68(5): 879–84.PubMedGoogle Scholar
  35. 35.
    Nelson-Rees WA, Flandermeyer RR. HeLa cultures de ned. Science 1976; 191(4222): 96–8.PubMedGoogle Scholar
  36. 36.
    Webber MM, Horan PK, Bouldin TR. Present status of MA-160 cell line. Prostatic epithelium or HeLa cells. Invest Urol 1977; 14(5): 335–43.PubMedGoogle Scholar
  37. 37.
    Masters J. False cell lines. Int J Cancer 2002; 99(1): 154.PubMedCrossRefGoogle Scholar
  38. 38.
    Drexler HG, Dirks WG, Matsuo Y, MacLeod RA. False leuke-mia–lymphoma cell lines: an update on over 500 cell lines. Leukemia 2003; 17(2): 416–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Barnes GL, Javed A, Waller SM, et al. Osteoblast-related tran-scription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003; 63(10): 2631–7.PubMedGoogle Scholar
  40. 40.
    Kaplan J, Hukku B. Cell line characterization and authentication. Methods Cell Biol 1998; 57: 203–16.PubMedCrossRefGoogle Scholar
  41. 41.
    UKCCCR guidelines for the use of cell lines in cancer research. Br J Cancer 2000; 82(9): 1495–509.CrossRefGoogle Scholar
  42. 42.
    Rae JM, Ramus SJ, Waltham M et al. Common origins ofMDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metast 2004; 21(6): 543–52(this issue).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Erik W. Thompson
    • 1
  • Mark Waltham
    • 1
  • Susan J. Ramus
    • 1
  • Anne-Marie Hutchins
    • 1
  • Jane E. Armes
    • 1
  • Ian G. Campbell
    • 1
  • Elizabeth D. Williams
    • 1
  • Phillip R. Thompson
    • 1
  • James M. Rae
    • 1
  • Michael D. Johnson
    • 1
  • Robert Clarke
    • 1
  1. 1.Victorian Breast Cancer Research Consortium Groups for Invasion and Metastasis of Breast CancerSt. Vincent's Institute of Medical ResearchUSA

Personalised recommendations