Clinical & Experimental Metastasis

, Volume 21, Issue 6, pp 543–552 | Cite as

Common origins of MDA-MB-435 cells from various sources with those shown to have melonoma properties

  • James M. Rae
  • Susan J. Ramus
  • Mark Waltham
  • Jane E. Armes
  • Ian G. Campbell
  • Robert Clarke
  • Robert J. Barndt
  • Michael D. Johnson
  • Erik W. Thompson

Abstract

Recently, the tissue origin of MDA-MB-435 cell line has been the subject of considerable debate. In this study, we set out to determine whether MDA-MB-435-DTP cells shown to express melanoma-specific genes were identical to various other MDA-MB-435 cell stocks worldwide. CGH-microarray, genetic polymorphism genotyping, microsatellite fingerprint analysis and/or chromosomal number confirmed that the MDA-MB-435 cells maintained at the Lombardi Comprehensive Cancer Center (MDA-MB-435-LCC) are almost identical to the MDA-MB-435-DTP cells, and showed a very similar profile to those obtained from the same original source (MD Anderson Cancer Center) but maintained independently (MDA-MB-435-PMCC). Gene expression profile analysis confirmed common expression of genes among different MDA-MB-435-LCC cell stocks, and identified some unique gene products in MDA-MB-435-PMCC cells. RT-PCR analysis confirmed the expression of the melanoma marker tyrosinase across multiple MDA-MB-435 cell stocks. Collectively, our results show that the MDA-MB-435 cells used widely have identical origins to those that exhibit a melanoma-like gene expression signature, but exhibit a small degree of genotypic and phenotypic drift.

MDA-MB-435 breast cancer cell lines melanoma microsatellite analysis chromosomal number tyrosinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cailleau R, Olive M, Cruciger QV. Long-term human breastcarcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro 1978; 14(11): 911–15.Google Scholar
  2. 2.
    Price JE, Polyzos A, Zhang RD, Daniels LM. Tumorigenicityand metastasis of human breast carcinoma cell lines in nudemice. Cancer Res 1990; 50(3): 717–21.PubMedGoogle Scholar
  3. 3.
    Price JE, Zhang RD. Studies of human breast cancer metastasisusing nude mice. Cancer Metast Rev 1990; 8(4): 285–97.CrossRefGoogle Scholar
  4. 4.
    Clarke R, Leonessa F, Brunner N, Thompson EW. In vitromodels of human breast cancer. In Harris JR, Lippman ME, Morrow M, Hellman S (ed): Diseases of the Breast. Philadelphia: Lippincott, 1995.Google Scholar
  5. 5.
    Clarke R, Johnson M. Animal models. In Harris JR (ed): Diseases of the Breast, 2nd edition. Philadelphia: Lippincott Wil-liams & Wilkins; 2000; 319–34.Google Scholar
  6. 6.
    Ross DT, Scherf U, Eisen MB et al. Systematic variation ingene expression patterns in human cancer cell lines. Nat Genet2000; 24(3): 227–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Jessani N, Liu Y, Humphrey M, Cravatt BF. Enzyme activity pro-les of the secreted and membrane proteome that depict cancercell invasiveness. Proc Natl Acad Sci USA 2002; 99(16): 10335–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee H, Lin EC, Liu L, Smith JW. Gene expression pro ling oftumor xenografts: In vivo analysis of organ-specific metastasis. Int J Cancer 2003; 107(4): 528–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellison G, Klinowska T, Westwood RF et al. Further evidenceto support the melanocytic origin of MDA-MB-435. MolPathol 2002; 55(5): 294–99.Google Scholar
  10. 10.
    Myers TG, Anderson NL, Waltham M et al. A protein expres-sion database for the molecular pharmacology of cancer. Elec-trophoresis 1997; 18(3–4): 647–53.CrossRefGoogle Scholar
  11. 11.
    Leonessa F, Green D, Licht T et al. MDA435/LCC6 andMDA435/LCC6MDR1: ascites models of human breast cancer. Br J Cancer 1996; 73(2): 154–61.PubMedGoogle Scholar
  12. 12.
    Scudiero DA, Monks A, Sausville EA. Cell line designationchange: Multidrug-resistant cell line in the NCI anticancerscreen. J Natl Cancer Inst 1998; 90(11): 862.PubMedGoogle Scholar
  13. 13.
    Ackland ML, Newgreen D, Price JT et al. Epidermal growthfactor stimulates epithelio-mesenchymal transition in the stablehuman breast carcinoma cell line variant PMC42-LA. LabInvest 2003; 83(3): 435–48.Google Scholar
  14. 14.
    Kallioniemi OP, Kallioniemi A, Piper J et al. Optimizing com-parative genomic hybridization for analysis of DNA sequencecopy number changes in solid tumors. Genes ChromosomesCancer 1994; 10(4): 231–43.Google Scholar
  15. 15.
    Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analy-sis and display of genome-wide expression patterns. Proc NatlAcad Sci USA. 1998; 95(25): 14863–68.CrossRefGoogle Scholar
  16. 16.
    Takeo S, Arai H, Kusano N et al. Examination of onco-gene ampli cation by genomic DNA microarray in hepatocel-lular carcinomas: comparison with comparative genomichybridization analysis. Cancer Genet Cytogenet 2001; 130(2): 127–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Rae JM, Cordero KE, Scheys JO et al. Genotyping for polymor-phic drug metabolizing enzymes from para. In-embedded and im-munohistochemically stained tumor samples. Pharmacogenetics2003; 13(8): 501–507.PubMedCrossRefGoogle Scholar
  18. 18.
    Davidson JM, Gorringe KL, Chin SF et al. Molecular cytoge-netic analysis of breast cancer cell lines. Br J Cancer 2000; 83(10): 1309–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Sellappan S, Grijalva R, Zhou X et al. Lineage in delity ofMDA-MB-435 cells: Expression of melanocyte proteins in abreast cancer cell line. Cancer Res 2004; 64(10): 3479–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Welch DR, Krizman DB, Nicolson GL. Multiple phenotypicdivergence of mammary adenocarcinoma cell clones. In vitro and in vivo properties. Clin Exp Metast 1984; 2(4): 333–355.CrossRefGoogle Scholar
  21. 21.
    Welch DR, Evans DP, Tomasovic SP et al. Multiple phenotypicdivergence of mammary adenocarcinoma cell clones. II. Sensi-tivity to radiation, hyperthermia and FUdR. Clin Exp Metast1984; 2(4): 357–71.CrossRefGoogle Scholar
  22. 22.
    Welch DR, Nicolson GL. Phenotypic drift and heterogeneity inresponse of metastatic mammary adenocarcinoma cell clones toadriamycin, 5-. uoro-2-deoxyuridine and methotrexate treatment in vitro. Clin Exp Metast 1983; 1(4): 317–25.CrossRefGoogle Scholar
  23. 23.
    Welch DR, Milas L, Tomasovic SP, Nicolson GL. Heteroge-neous response and clonal drift of sensitivities of metastatic13762NF mammary adenocarcinoma clones to gamma-radia-tion in vitro. Cancer Res 1983; 43(1): 6–10.PubMedGoogle Scholar
  24. 24.
    Bahia H, Ashman JN, Cawkwell L et al. Karyotypic varia-tion between independently cultured strains of the cell lineMCF-7 identified by multicolourfluorescence in situ hybridization. Int J Oncol 2002; 20(3): 489–94.PubMedGoogle Scholar
  25. 25.
    Gilles C, Thompson EW. The epithelial to mesenchymal transi-tion and metastatic progression in carcinoma. The Breast J1996; 2: 83–96.Google Scholar
  26. 26.
    Thiery JP. Epithelial to mesenchymal transitions in tumour progression. Nat Cancer 2002; 2: 442–54.CrossRefGoogle Scholar
  27. 27.
    Hendrix MJ, Seftor EA, Kirschmann DA, Seftor RE. Molecu-lar biology of breast cancer metastasis. Molecular expression ofvascular markers by aggressive breast cancer cells. BreastCancer Res 2000; 2(6): 417–22.Google Scholar
  28. 28.
    Satya-Prakash KL, Pathak S, Hsu TC et al. Cytogenetic analy-sis on eight human breast tumor cell lines: high frequencies of1q, 11q and HeLa-like marker chromosomes. Cancer Genet Cy-togenet 1981; 3(1): 61–73.CrossRefGoogle Scholar
  29. 29.
    Price JE. Analyzing the metastatic phenotype. J Cell Biochem1994; 56(1): 16–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Thompson EW, Waltham M, Ramus SJ et al. LCC15-MBcells are MDA-MB-435: A review of misidenti ed breast andprostate cell lines. Clin Exp Metast 2004; 21(6): 535–41 (thisissue).CrossRefGoogle Scholar
  31. 31.
    Ramus SJ, Pharoah PD, Harrington P et al. BRCA1/2 muta-tion status influences somatic genetic progression in inheritedand sporadic epithelial ovarian cancer cases. Cancer Res 2003; 63(2): 417–23.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • James M. Rae
    • 1
  • Susan J. Ramus
    • 1
  • Mark Waltham
    • 1
  • Jane E. Armes
    • 1
  • Ian G. Campbell
    • 1
  • Robert Clarke
    • 1
  • Robert J. Barndt
    • 1
  • Michael D. Johnson
    • 1
  • Erik W. Thompson
    • 1
  1. 1.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Departments of PathologyAustralia

Personalised recommendations