Advertisement

Quasi-experimental estimates of the transient climate response using observational data

  • Giselle MontamatEmail author
  • James H. Stock
Article

Abstract

The transient climate response (TCR) is the change in global mean temperature at the time of an exogenous doubling in atmospheric CO2 concentration increasing at a rate of 1% per year. A problem with estimating the TCR using observational data is that observed CO2 concentrations depend in turn on temperature. Therefore, the observed concentration data are endogenous, potentially leading to simultaneous causation bias of regression estimates of the TCR. We address this problem by employing instrumental variables regression, which uses changes in radiative forcing external to earth systems to provide quasi-experiments that can be used to estimate the TCR. Because the modern instrumental record is short, we focus on decadal fluctuations (up to 30-year changes), which also mitigate some statistical issues associated with highly persistent temperature and concentration data. Our estimates of the TCR for these shorter horizons, normalized to be comparable to the traditional 70-year TCR, fall within the range in the IPCC-AR5 and provide new observational confirmation of model-based estimates.

Keywords

TCR Endogeneity Instrumental variables Radiative forcing 

Notes

Supplementary material

10584_2019_2589_MOESM1_ESM.docx (5.5 mb)
ESM 1 (DOCX 5.49 mb)

References

  1. Andrews I, Stock JH, Sun L (2018) Weak instruments in IV regression: theory and practice. Annual Review of Economics. ForthcomingGoogle Scholar
  2. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) . Cambridge University Press, CambridgeGoogle Scholar
  3. Bruns SB, Csereklyei Z, Stern D (2020) A multicointegration model of global climate change. Journal of Econometrics 214(1):175-197 Google Scholar
  4. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  5. Elliott G (1998) On the robustness of cointegration methods when regressors almost have unit roots. Econometrica 66(1):149–158CrossRefGoogle Scholar
  6. Granger CWJ, Newbold P (1974) Spurious Regressions in Econometrics. Journal of Econometrics 2(2):111-120.CrossRefGoogle Scholar
  7. Kaufmann RK, Stern DI (1997) Evidence for human influence on climate from hemisphericc temperature relations. Nature 388(6637):39-44.CrossRefGoogle Scholar
  8. Kaufmann RK, Stern D (2000) Detecting a global warming signal in hemispheric temperature series: a structural time series analysis. Climatic Change 47:411–438CrossRefGoogle Scholar
  9. Kaufmann RK, Stern D (2002) Cointegration analysis of hemispheric temperature relations. Journal of Geophysical Research 107:D2.  https://doi.org/10.1029/2000JD000174 CrossRefGoogle Scholar
  10. Kaufmann RK, Kauppi H, Stock JH (2006a) Emissions, concentrations and temperature: a time series analysis. Climatic Change 77:249–278CrossRefGoogle Scholar
  11. Kaufmann RK, Kauppi H, Stock JH (2006b) The relation between radiative forcing and temperature: What do statistical analyses of the observational record measure? Climatic Change 77:279–289CrossRefGoogle Scholar
  12. Kiefer N, Vogelsang T (2005) A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory 21:1130–1164CrossRefGoogle Scholar
  13. Lazarus E, Lewis DJ, Stock JH, Watson M (2018) HAR inference: recommendations for practice. Journal of Economic Statistics 36:541–559CrossRefGoogle Scholar
  14. Montiel OJ, Pflueger C (2013) A robust test for weak instruments. Journal of Business and Economic Statistics 31:358–369CrossRefGoogle Scholar
  15. Müller UK, Watson MW (2017) Low-frequency econometrics. In: Honore B, Pakes A, Piazzesi M, Samuelson L (eds) Advances in Economics and Econometrics Vol. II. Cambridge University PressGoogle Scholar
  16. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Newey WK, West KD (1987) A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix.Econometrica 55:703–708.CrossRefGoogle Scholar
  18. Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knutti R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR (2013) Energy budget constraints on climate response. Nature Geoscience 6:415–416CrossRefGoogle Scholar
  19. Phillips PCB, Leirvik T, Storelvmo T (2020) Econometric estimates of Earth’s transient climate sensitivity. Journal of Econometrics 214(1):6-32CrossRefGoogle Scholar
  20. Pretis F (2020) Econometric modelling of climate systems: the equivalence of energy balance models and cointegrated vector autoregressions. Journal of Econometrics 214(1):256-273CrossRefGoogle Scholar
  21. Ramaswamy V, Boucher O, Haigh D, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S, Betts R, Charlson R, Chuang C, Daniel JS, Del Genio A, van Dorland R, Feichter J, Fuglestvedt J, de Forster PMF, Ghan SJ, Jones A, Kiehl JT, Koch D, Land C, Lean J, Lohman U, Minschwaner K, Penner JE, Roberts DL, Rodhe H, Roelofs GJ, Rotstayn LD, Schneider TL, Schumann U, Schwartz SE, Schwarzkopf MD, Shine KP, Smith S, Stevenson DS, Stordal F, Tegen I, Zhang Y (2001) Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Work Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  22. Robock A (2015) Climate and climate change|volcanoes: role in climate. In: Encyclopedia of Atmospheric Sciences, pp 105–111CrossRefGoogle Scholar
  23. Rohde R, Muller R, Jacobsen R, Muller E, Perlmutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2013a) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics and Geostatistics: An Overview 1:1.  https://doi.org/10.4172/2327-4581.1000101 CrossRefGoogle Scholar
  24. Rohde R, Muller R, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickham C, Mosher S (2013b) Berkeley earth temperature averaging process. Geoinformatics and Geostatistics: An Overview 1:2.  https://doi.org/10.4172/gigs.1000103 CrossRefGoogle Scholar
  25. Stern D, Kaufmann RK (2014) Anthropogenic and natural causes of climate change. Climatic Change 122:257–269CrossRefGoogle Scholar
  26. Stock JH, Watson MW (2018) Introduction to Econometrics, 4th edn. Pearson, New YorkGoogle Scholar
  27. Vogelsang T (2012) Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects. Journal of Econometrics 166:303–319CrossRefGoogle Scholar
  28. Wooldridge JM (2009) Introductory econometrics: a modern approach, 4th edn. Boston, CengageGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of EconomicsHarvard UniversityCambridgeUSA
  2. 2.Department of EconomicsHarvard University and the National Bureau of Economic ResearchCambridgeUSA

Personalised recommendations