Advertisement

Temperatures across Europe: evidence of time trends

  • Luis A. Gil-AlanaEmail author
  • Laura Sauci
Article

Abstract

This paper deals with the analysis of the temperatures in a group of 29 stations located in twelve European countries by looking at the coefficients in a linear time trend regression model and allowing for long memory patterns in the error term. The results indicate that long memory is present in practically all cases, and the time trend coefficients are statistically significant in the majority of the cases implying evidence of increasing warming trends. This pattern is particularly noticeable in the case of several stations located across Italy and France, which might be related with micro climates affecting these regions.

Keywords

European temperatures Long memory Time trends 

Notes

Acknowledgments

Comments from the Editor and three anonymous reviewers are gratefully acknowledged.

Funding information

Prof. Luis A. Gil-Alana gratefully acknowledges financial support from the Ministerio de Economía y Competitividad (ECO2017-85503-R).

References

  1. Baillie RT, Chung SK (2002) Modelling and forecasting from trend-stationary long memory models with applications to climatology. Int J Forecast 18(2):215–226CrossRefGoogle Scholar
  2. Bloomfield P (1973) An exponential model in the spectrum of a scalar time series. Biometrika 60(2):217–226CrossRefGoogle Scholar
  3. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res-Atmos 112(D12):1–28.  https://doi.org/10.1029/2006JD008249 CrossRefGoogle Scholar
  4. Bunde A, Havlin S, Koscielny-Bunde E, Schellnhuber HJ (2001) Long term persistence in the atmosphere: global laws and tests of climate models. Phys A: Stat Mech Applic 302(1-4):255–267CrossRefGoogle Scholar
  5. Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Long term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys Rev Lett 94(4):048701CrossRefGoogle Scholar
  6. Caballero R, Jewson S, Brix A (2002) Long memory in surface air temperature: Detection, modelling and application to weather derivative valuation. Clim Res 21(2):127–140CrossRefGoogle Scholar
  7. Caloiero T, Coscarelli R, Ferrari E, Sirangelo B (2017) Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int J Climatol 37(S1):284–297.  https://doi.org/10.1002/joc.5003 CrossRefGoogle Scholar
  8. Dahlhaus R (1989) Efficient parameter estimation for self-similar processes. Ann Stat 17(4):1749–1766CrossRefGoogle Scholar
  9. Delvaux C, Ingels R, Vrábeĺ V, Journée M, Bertrand C (2018) Quality control and homogenization of the Belgian historical temperature data. Int J Climatol.  https://doi.org/10.1002/joc.5792
  10. Franzke C (2010) Long range dependence and climate noise characteristics of Antarctic temperature data. J Clim 23(22):6074–6081CrossRefGoogle Scholar
  11. Franzke C (2012) Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J Clim 25(12):4172–4183CrossRefGoogle Scholar
  12. Gibelin A-L, Dubuisson B, Corre L, Deaux N, Jourdain S, Laval L, Piquemal J-M, Mestre O, Dennetière D, Desmidt S, Tamburini A (2014) Evolution de la température en France depuis les années 1950: Constitution d’un nouveau jeu de séries homogénéisées de référence. La Météorologie 87:45–53.  https://doi.org/10.4267/2042/54336 CrossRefGoogle Scholar
  13. Gil-Alana LA (2003) An application of fractional integration to a long temperature time series. Int J Climatol 23(14):1699–1710CrossRefGoogle Scholar
  14. Gil-Alana LA (2004) The use of the Bloomfield model as an approximation to ARMA processes in the context of fractional integration. Math Comput Model 39(4-5):429.436CrossRefGoogle Scholar
  15. Gil-Alana LA (2005) Statistical model for the temperatures in the Northern hemisphere using fractional integration techniques. J Clim 18(24):5537–5369CrossRefGoogle Scholar
  16. Gil-Alana LA (2008) Time trend estimation with breaks in temperature time series. Clim Chang 89(3-4):325–337CrossRefGoogle Scholar
  17. Gil-Alana LA (2010) Climate change in the Iberian Peninsula. Evidence based on fractional integration techniques. Seguridad y Medio Ambiente 117(1):50–62Google Scholar
  18. Gil-Alana LA (2018) Maximum and minimum temperatures in the United States: time trends and persistence. Atmos Sci Lett 19(4):e810, 1−3.  https://doi.org/10.1002/asl.810 CrossRefGoogle Scholar
  19. Gil-Alana LA, Robinson PM (1997) Testing of unit roots and other nonstationary hypotheses in macroeconomic time series. J Econ 80:241–268CrossRefGoogle Scholar
  20. IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 ppGoogle Scholar
  21. Klingbjer P, Moberg A (2003) A composite monthly temperature record from Tornedalen in northern Sweden, 1802−2002. Int J Climatol 23(12):1465–1494.  https://doi.org/10.1002/joc.946 CrossRefGoogle Scholar
  22. Mariani, L., and Zavatti, F. (2017), A dataset of the European average temperature anomalies for the period 1655-2016, Climatemonitor.Google Scholar
  23. Matiu M, Ankerst DP, Menzel A (2016) Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012. Int J Climatol 36(1):13–27.  https://doi.org/10.1002/joc.4326 CrossRefGoogle Scholar
  24. Nemec J, Gruber C, Chimani B, Auer I (2013) Trends in extreme temperature indices in Austria based on a new homogenised dataset. Int J Climatol 33(6):1538–1550.  https://doi.org/10.1002/joc.3532 CrossRefGoogle Scholar
  25. Rea W, Reale M, Brown J (2011) Long memory in temperature reconstructions. Climate Change 107(3-4):247–265CrossRefGoogle Scholar
  26. Ribes A, Corre L, Gibelin A-L, Dubuisson B (2016) Issues in estimating observed change at the local scale – a case study: the recent warming over France. Int J Climatol 36(11):3794–3806.  https://doi.org/10.1002/joc.4593 CrossRefGoogle Scholar
  27. Robinson PM (1994) Efficient Tests of Nonstationary Hypotheses. J Am Stat Assoc 89(428):1420–1437CrossRefGoogle Scholar
  28. Scorzini AR, Di Bacco M, Leopardi M (2018) Recent trends in daily temperature extremes over the central Adriatic region of Italy in a Mediterranean climatic context. Int J Climatol 38(S1):e741–e757.  https://doi.org/10.1002/joc.5403 CrossRefGoogle Scholar
  29. Shen Z, Shi J, Lei Y (2017) Comparison of the long range climate memory in outgoing lognwage radiation over the Tibetan plateau and the Indian monsoon region. Adv Meteorol 7637351:1–7Google Scholar
  30. Whittle P (1951) Hypothesis testing in time series analysis. Uppsala, Almqvist & Wiksells Boktrycheri ABGoogle Scholar
  31. Yuan N, Fu Z, Liu S (2013) Long-term memory in climate variability: a new look based on fractional integral techniques. J Geophys Res-Atmos 118(23):12962–12969CrossRefGoogle Scholar
  32. Yuan N, Ding M, Huang Y (2015) On the long term climate memory in the surface air temperature records over Antarctica: a non-negligible factor for trend evaluation. J Clim 28(15):5922–5934CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Economics and NCID (ICS)University of NavarraPamplonaSpain
  2. 2.Universidad Francisco de VitoriaMadridSpain

Personalised recommendations