Advertisement

Climatic Change

, Volume 155, Issue 3, pp 417–435 | Cite as

The glass half-empty: climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia

  • Rodrigo Aguayo
  • Jorge León-MuñozEmail author
  • José Vargas-Baecheler
  • Aldo Montecinos
  • René Garreaud
  • Mauricio Urbina
  • Doris Soto
  • José Luis Iriarte
Article

Abstract

Oceanographic conditions in coastal Chilean northern Patagonia (41–46°S) are strongly influenced by freshwater inputs. Precipitation and streamflow records have shown a marked decrease in this area during the last decades. Given this hydro-climatic scenario, we evaluated the hydrological sensitivity driven by climate change in the Puelo River (average annual streamflow = 640 m3 s−1), one of the most important sources of freshwater in the fjords and inland seas of Chile’s Northern Patagonia. A lumped hydrological model was developed to evaluate the potential impacts of climate change under the Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 scenarios in the near future (2030–2060) using the delta change method based on 25 General Circulation Models. The model was fed by local hydro-meteorological data and remote sensors, simulating well the magnitude and seasonality of Puelo River streamflow. Considering the Refined Index of Agreement (RIA), the model achieved a high performance in the calibration (RIA = 0.79) and validation stages (RIA = 0.78). Under the RCP 8.5 scenario (multi-model mean), the projections suggest that the annual input of freshwater from the Puelo River to the Reloncaví Fjord would decrease by − 10% (1.6 km3 less freshwater); these decreases would mainly take place in summer (~ − 20%) and autumn (~ − 15%). The recurrence of extreme hydroclimatic events is also projected to increase in the future, with the probability of occurrence of droughts, such as the recent 2016 event with the lowest freshwater input in the last 70 years, doubling with respect to the historical records.

Notes

Acknowledgments

We thank Natalia Sepulveda for the preprocessing of radiosonde data. Finally, we thank Dirección General de Aguas, ENDESA, Dirección Meteorológica de Chile, and Subsecretaría de Recursos Hídricos de Argentina for their data from streamflow gages and meteorological stations in Chile and Argentina, respectively.

Funding information

This research was supported by CONICYT Chile projects—FONDECYT: No. 11170768 “Potential effects of land use change on fjords of western Patagonia under climate change scenarios”, FAA-022018, FONDAP No. 15110027 “Interdisciplinary Center for Aquaculture Research”, and by the Instituto de Fomento Pesquero (IFOP) project on: “Assessment of monthly average streamflow in a basin of continental Chiloé”.

Supplementary material

10584_2019_2495_MOESM1_ESM.docx (802 kb)
ESM 1 (DOCX 801 kb)

References

  1. Arblaster J, Meehl G (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905.  https://doi.org/10.1175/JCLI3774.1 CrossRefGoogle Scholar
  2. Arif C, Setiawan BI, Mizoguchi M, Doi R (2012) Estimation of water balance components in Paddy fields under non-flooded irrigation regimes by using excel solver. J Agron 11:53–59.  https://doi.org/10.3923/ja.2012.53.59 CrossRefGoogle Scholar
  3. Bhatti HA, Rientjes T, Haile AT et al (2016) Evaluation of bias correction method for satellite-based rainfall data. Sensors (Switzerland) 16:1–16.  https://doi.org/10.3390/s16060884 Google Scholar
  4. Boisier JP, Rondanelli R, Garreaud R, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in Central Chile. Geophys Res Lett 43:413–421.  https://doi.org/10.1002/2015GL067265 CrossRefGoogle Scholar
  5. Boisier JP, Alvarez-Garreton C, Cordero RR, et al (2018) Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations Elem Sci Anthr 6 doi:  https://doi.org/10.1525/elementa.328/
  6. Bozkurt D, Rojas M, Boisier JP, Valdivieso J (2018) Projected hydroclimate changes over Andean basins in Central Chile from downscaled CMIP5 models under the low and high emission scenarios. Clim Change 1–17.  https://doi.org/10.1007/s10584-018-2246-7
  7. Bueno P, Soto D (2017) Adaptation strategies of the aquaculture sector to the impacts of climate change. FAO Fisheries and Aquaculture Circular No. 1142. FAO, RomeGoogle Scholar
  8. Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298:242–266.  https://doi.org/10.1016/j.jhydrol.2004.03.042 CrossRefGoogle Scholar
  9. Castillo MI, Cifuentes U, Pizarro O et al (2016) Seasonal hydrography and surface outflow in a fjord with a deep sill: the Reloncaví fjord, Chile. Ocean Sci 12:533–534.  https://doi.org/10.5194/os-12-533-2016 CrossRefGoogle Scholar
  10. Clément A, Lincoqueo L, Saldivia M et al (2016) Exceptional summer conditions and HABs of Pseudochattonella in southern Chile create record impacts on Salmon farms. HAN 53:1–3Google Scholar
  11. Collins M, An S-I, Cai W et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397.  https://doi.org/10.1038/ngeo868 CrossRefGoogle Scholar
  12. CONAF, UACh (2014) Monitoreo de cambios, corrección cartográfica y actualización del catastro de recursos Vegetacionales Nativos de la Región de Los Lagos. Valdivia, ChileGoogle Scholar
  13. Dariane AB, Khoramian A, Santi E (2017) Remote sensing of environment investigating spatiotemporal snow cover variability via cloud-free MODIS snow cover product in central Alborz region. Remote Sens Environ 202:152–165.  https://doi.org/10.1016/j.rse.2017.05.042 CrossRefGoogle Scholar
  14. Dávila PM, Figueroa D, Müller E (2002) Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Cont Shelf Res 22:521–534.  https://doi.org/10.1016/S0278-4343(01)00072-3 CrossRefGoogle Scholar
  15. Demaria EMC, Maurer EP, Thrasher B et al (2013) Climate change impacts on an alpine watershed in Chile: do new model projections change the story? J Hydrol 502:128–138.  https://doi.org/10.1016/j.jhydrol.2013.08.027 CrossRefGoogle Scholar
  16. Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom. Clim Chang 69:245–268.  https://doi.org/10.1007/s10584-005-1157-6 CrossRefGoogle Scholar
  17. Fowler K, Peel M, Western A, Zhang L (2018) Improved rainfall-runoff calibration for drying climate: choice of objective function. Water Resour Res 54:3392–3408.  https://doi.org/10.1029/2017WR022466 CrossRefGoogle Scholar
  18. Friedl M, Sulla-Menashe D (2015) MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006 [data set]. NASA EOSDIS Land Processes DAACGoogle Scholar
  19. Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Sci Data 2:1–21.  https://doi.org/10.1038/sdata.2015.66 CrossRefGoogle Scholar
  20. Garreaud R (2018) Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Clim Res 74:217–229.  https://doi.org/10.3354/cr01505 CrossRefGoogle Scholar
  21. Garreaud R, Vuille M, Compagnucci R, Marengo J (2009) Present-day south American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195.  https://doi.org/10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  22. Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230.  https://doi.org/10.1175/JCLI-D-12-00001.1 CrossRefGoogle Scholar
  23. Garreaud R, Alvarez-Garreton C, Barichivich J et al (2017) The 2010-2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21:6307.  https://doi.org/10.5194/hess-2017-191 CrossRefGoogle Scholar
  24. González HE, Castro LR, Daneri G et al (2013) Land–ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47–50°S). Prog Oceanogr 119:32–47.  https://doi.org/10.1016/j.pocean.2013.06.003 CrossRefGoogle Scholar
  25. Hall K, Riggs GA, Salomonson VV, Goddard N (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194.  https://doi.org/10.1016/S0034-4257(02)00095-0 CrossRefGoogle Scholar
  26. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1108.  https://doi.org/10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  27. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699.  https://doi.org/10.1175/JCLI3990.1 CrossRefGoogle Scholar
  28. Henley BJ, Gergis J, Karoly DJ et al (2015) A Tripole index for the Interdecadal Pacific oscillation. Clim Dyn 45:3077–3090.  https://doi.org/10.1007/s00382-015-2525-1 CrossRefGoogle Scholar
  29. Hong Y, Adler RF (2008) Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Int J Remote Sens 29:471–477.  https://doi.org/10.1080/01431160701264292 CrossRefGoogle Scholar
  30. INTA (2009) Monitoreo de la Cobertura y el Uso del Suelo a partir de sensores remotos. ArgentinaGoogle Scholar
  31. Iriarte JL (2018) Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front Mar Sci 5:360.  https://doi.org/10.3389/fmars.2018.00360 CrossRefGoogle Scholar
  32. Iriarte JL, León-Muñoz J, Marcé R et al (2017) Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. New Zeal J Mar Freshw Res 51:304–315.  https://doi.org/10.1080/00288330.2016.1220955 CrossRefGoogle Scholar
  33. Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277.  https://doi.org/10.1016/j.jhydrol.2012.01.011 CrossRefGoogle Scholar
  34. Krogh SA, Pomeroy JW, Mcphee J (2015) Physically based mountain hydrological modeling using reanalysis data in Patagonia. J Hydrometeorol 16:172–193.  https://doi.org/10.1175/JHM-D-13-0178.1 CrossRefGoogle Scholar
  35. Lara A, Villalba R, Urrutia R (2008) A 400-year tree-ring record of the Puelo River summer-fall streamflow in the Valdivian rainforest eco-region, Chile. Clim Chang 86:331–356.  https://doi.org/10.1007/s10584-007-9287-7 CrossRefGoogle Scholar
  36. León-Muñoz J, Marcé R, Iriarte JL (2013) Influence of hydrological regime of an Andean river on salinity, temperature and oxygen in a Patagonia fjord, Chile. New Zeal J Mar Freshw Res 47:515–528.  https://doi.org/10.1080/00288330.2013.802700 CrossRefGoogle Scholar
  37. León-Muñoz J, Urbina MA, Garreaud R, Iriarte JL (2018) Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci Rep 8:1330.  https://doi.org/10.1038/s41598-018-19461-4 CrossRefGoogle Scholar
  38. Mckee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proc 8th Conf Appl Climatol 17:179–184Google Scholar
  39. McPhee J, Rubio-Alvarez E, Meza R et al (2010) An approach to estimating hydropower impacts of climate change from a regional perspective. In: Watershed management 2010. American Society of Civil Engineers, Reston, pp 13–24CrossRefGoogle Scholar
  40. Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk Assess 21:223–233.  https://doi.org/10.1007/s00477-006-0058-1 CrossRefGoogle Scholar
  41. Molinet C, Díaz M, Marín SL et al (2017) Relation of mussel spatfall on natural and artificial substrates: analysis of ecological implications ensuring long-term success and sustainability for mussel farming. Aquaculture 467:211–218.  https://doi.org/10.1016/j.aquaculture.2016.09.019 CrossRefGoogle Scholar
  42. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in Central Chile and associated circulation anomalies. J Clim 16:281–296.  https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2 CrossRefGoogle Scholar
  43. Montory JA, Cumillaf JP, Cubillos VM et al (2018) Early development of the ectoparasite Caligus rogercresseyi under combined salinity and temperature gradients. Aquaculture 486:68–74.  https://doi.org/10.1016/j.aquaculture.2017.12.017 CrossRefGoogle Scholar
  44. Muñoz AA, González-Reyes A, Lara A et al (2016) Streamflow variability in the Chilean temperate-Mediterranean climate transition (35°S–42°S) during the last 400 years inferred from tree-ring records. Clim Dyn 47:4051–4066.  https://doi.org/10.1007/s00382-016-3068-9 CrossRefGoogle Scholar
  45. Najafi MR, Moradkhani H, Jung IW (2011) Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol Process 25:2814–2826.  https://doi.org/10.1002/hyp.8043 CrossRefGoogle Scholar
  46. Pasquini AI, Lecomte KL, Depetris PJ (2008) Climate change and recent water level variability in Patagonian proglacial lakes, Argentina. Glob Planet Change 63:290–298.  https://doi.org/10.1016/j.gloplacha.2008.07.001 CrossRefGoogle Scholar
  47. Pasquini AI, Lecomte KL, Depetris PJ (2013) The Manso glacier drainage system in the northern Patagonian Andes: an overview of its main hydrological characteristics. Hydrol Process 27:217–224.  https://doi.org/10.1002/hyp.9219 CrossRefGoogle Scholar
  48. Pérez T, Mattar C, Fuster R (2018) Decrease in snow cover over the Aysén river catchment in Patagonia, Chile. Water (Switzerland) 10:1–16.  https://doi.org/10.3390/w10050619 Google Scholar
  49. Poulin A, Brissette F, Leconte R et al (2011) Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J Hydrol 409:626–636.  https://doi.org/10.1016/j.jhydrol.2011.08.057 CrossRefGoogle Scholar
  50. Smith RB, Evans JP (2007) Orographic precipitation and water vapor fractionation over the southern Andes. J Hydrometeorol 8:3–19.  https://doi.org/10.1175/JHM555.1 CrossRefGoogle Scholar
  51. Soto D, León-Muñoz J, Dresdner J, et al (2019) Salmon farming vulnerability to climate change in southern Chile: understanding the biophysical, socioeconomic and governance links. Rev Aquac Raq 12336.  https://doi.org/10.1111/raq.12336
  52. Torres R, Silva N, Reid B, Frangopulos M (2014) Silicic acid enrichment of subantarctic surface water from continental inputs along the Patagonian archipelago interior sea (41–56°S). Prog Oceanogr 129:50–61.  https://doi.org/10.1016/j.pocean.2014.09.008 CrossRefGoogle Scholar
  53. Urbina MA, Cumillaf JP, Paschke K, Gebauer P (2019) Effects of pharmaceuticals used to treat salmon lice on non-target species: evidence from a systematic review. Sci Total Environ 649:1124–1136.  https://doi.org/10.1016/j.scitotenv.2018.08.334 CrossRefGoogle Scholar
  54. Valle-Levinson A, Sarkar N, Sanay R et al (2007) Spatial structure of hydrography and flow in a Chilean fjord, Estuario Reloncaví. Estuar Coasts 30:113–126.  https://doi.org/10.1007/BF02782972 CrossRefGoogle Scholar
  55. Vansteenkiste T, Tavakoli M, Van Steenbergen N et al (2014) Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. J Hydrol 511:335–349.  https://doi.org/10.1016/j.jhydrol.2014.01.050 CrossRefGoogle Scholar
  56. Vargas J, De La Fuente L, Arumí JL (2012) Balance hídrico mensual de una cuenca Patagónica de Chile: Aplicación de un modelo parsimonioso. Obras Proy 12:32–41.  https://doi.org/10.4067/S0718-28132012000200003 CrossRefGoogle Scholar
  57. Viale M, Garreaud R (2015) Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J Geophys Res Atmos 120:4962–4974.  https://doi.org/10.1002/2014JD023014 CrossRefGoogle Scholar
  58. Vicuña S, McPhee J, Garreaud R (2012) Agriculture vulnerability to climate change in a snowmelt-Driven Basin in semiarid Chile. J Water Resour Plan Manag 138:431–441.  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000202 CrossRefGoogle Scholar
  59. Wan Z, Hook S, Hulley G (2015) MOD11C3 MODIS/Terra land surface temperature/emissivity monthly L3 global 0.05Deg CMG V006 [data set]Google Scholar
  60. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094.  https://doi.org/10.1002/joc.2419 CrossRefGoogle Scholar
  61. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32.  https://doi.org/10.1029/2005GL023684
  62. Zambrano-Bigiarini M, Nauditt A, Birkel C et al (2017) Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol Earth Syst Sci 21:1295–1320.  https://doi.org/10.5194/hess-21-1295-2017 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Civil, Facultad de IngenieríaUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Química Ambiental, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
  3. 3.Centro Interdisciplinario para la Investigación Acuícola (INCAR)ConcepciónChile
  4. 4.Departamento de Geofísica, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  5. 5.Centro de Recursos Hídricos para la Agricultura y Minería (CRHIAM)ConcepciónChile
  6. 6.Departamento de Geofísica, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  7. 7.Centro de Ciencia del Clima y la Resiliencia (CR2)SantiagoChile
  8. 8.Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  9. 9.Instituto Milenio de Oceanografía (IMO)Universidad de ConcepciónConcepciónChile
  10. 10.Instituto de Acuicultura, Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)Universidad Austral de ChilePuerto MonttChile
  11. 11.Centro de Investigación Oceanográfica COPAS Sur-AustralUniversidad de ConcepciónConcepciónChile

Personalised recommendations