Advertisement

Climatic Change

, Volume 153, Issue 1–2, pp 181–197 | Cite as

Growing season and radial growth predicted for Fagus sylvatica under climate change

  • Peter PrislanEmail author
  • Jožica Gričar
  • Katarina Čufar
  • Martin de Luis
  • Maks Merela
  • Sergio Rossi
Article

Abstract

Climate scenarios for Slovenia suggest an increase in the mean annual temperature by 2 °C over the next six decades, associated with changes in the seasonal distribution of precipitation. European beech is an ecologically and economically important forest species in Europe, so it is important to understand the influence of changing conditions on its phenology and productivity for the upcoming years. We hypothesise that the ongoing warming and reduction in precipitation during the growing season will shorten the period of xylem development, thus limiting beech growth in the next decades. Xylem formation was monitored weekly from 2008 to 2016 at two sites in Slovenia. Onset and cessation of cell enlargement and secondary wall formation, as well as xylem growth, are used to evaluate climate-growth relationships by means of partial least squares regression and to predict xylem formation phenology and annual xylem increments under climate change scenarios. A positive correlation of spring phenological phases with March–May temperatures is found. In contrast, autumn phenological phases show a negative correlation with August and September temperatures, while high temperatures at the beginning of the year delay growth cessation. According to the selected climate change scenarios, phenological phases may advance by 2 days decade-1 in spring and delay by 1.5 days decade-1 in autumn. The duration of the growing season may increase by 20 days over the next six decades, resulting in 38 to 83% wider xylem increments. The growth of beech is expected to increase under a warming climate in the sites characterised by abundant water availability.

Notes

Acknowledgements

This work was supported by the Slovenian Research Agency (ARRS), young researchers’ program (Peter Prislan), programs P4-0015 and P4-0107, projects V4-1419 and Z4-7318 and by the 7th FP Infrastructures Project EUFORINNO (REGPOT No. 31598), by the Spanish Science and Innovation Ministry (MICINN), the ELENA program (CGL2012-31668) and by the ERASMUS bilateral agreement between the University of Ljubljana and the University of Alicante. Cooperation with Université du Québec à Chicoutimi was enabled by Fonds de recherche du Québec – Nature et Technologies (FRQNT) within a short-term research scholarship received by P. Prislan. The authors gratefully acknowledge the help of Marko Beber and the Slovenian Forest Service, Milko Detmar and Metropolitana d.o.o., as well as Luka Krže and Dr. Angela Balzano for their support with the laboratory and field work. We thank Martin Cregeen for language editing.

Supplementary material

10584_2019_2374_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2539 kb)

References

  1. Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS regression). WIRES Comput Stat 2:97–106.  https://doi.org/10.1002/wics.51 CrossRefGoogle Scholar
  2. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311.  https://doi.org/10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  3. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429.  https://doi.org/10.1093/forestry/cpm028 CrossRefGoogle Scholar
  4. Charru M, Seynave I, Morneau F, Bontemps JD (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecol Manag 260:864–874.  https://doi.org/10.1016/j.foreco.2010.06.005 CrossRefGoogle Scholar
  5. Cox I, Gaudard M (2013) Discovering partial least squares with JMP. SAS Institute, Inc., Cary, North Carolina, USAGoogle Scholar
  6. Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, del Castillo EM, Campelo F, Vavrčík H, Camarero JJ, Bryukhanova MV, Jyske T, Gričar J, Gryc V, De Luis M, Vieira J, Čufar K, Kirdyanov AV, Oberhuber W, Treml V, Huang J-G, Li X, Swidrak I, Deslauriers A, Liang E, Nöjd P, Gruber A, Nabais C, Morin H, Krause C, King G, Fournier M (2015) Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat Plants 1:15160.  https://doi.org/10.1038/nplants.2015.160 CrossRefGoogle Scholar
  7. Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625.  https://doi.org/10.1093/treephys/tps039 CrossRefGoogle Scholar
  8. Čufar K, de Luis M, Berdajs E, Prislan P (2008a) Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbor Gozd Les 87:123–134Google Scholar
  9. Čufar K, De Luis M, Prislan P, Gričar J, Črepinšek Z, Merela M, Kajfež-Bogataj L (2015) Do variations in leaf phenology affect radial growth variations in Fagus sylvatica? Int J Biometeorol 59:1127–1132.  https://doi.org/10.1007/s00484-014-0896-3 CrossRefGoogle Scholar
  10. Čufar K, de Luis M, Saz M, Črepinšek Z, Kajfež-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees Struct Funct 26:1091–1100.  https://doi.org/10.1007/s00468-012-0686-7 CrossRefGoogle Scholar
  11. Čufar K, Prislan P, de Luis M, Gričar J (2008b) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees Struct Funct 22:749–758.  https://doi.org/10.1007/s00468-008-0235-6 CrossRefGoogle Scholar
  12. de Luis M, Čufar K, Saz MA, Longares LA, Ceglar A, Kajfež-Bogataj L (2014) Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Reg Environ Chang 14:1801–1810.  https://doi.org/10.1007/s10113-012-0365-7 CrossRefGoogle Scholar
  13. Deslauriers A, Anfodillo T, Rossi S, Carraro V (2007) Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol 27:1125–1136.  https://doi.org/10.1093/treephys/27.8.1125 CrossRefGoogle Scholar
  14. Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892.  https://doi.org/10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  15. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe - a dendroecological study. Forest Ecol Manag 173:63–78.  https://doi.org/10.1016/S0378-1127(01)00816-7 CrossRefGoogle Scholar
  16. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees Struct Funct 21:1–11.  https://doi.org/10.1007/s00468-006-0107-x CrossRefGoogle Scholar
  17. Giagli K, Gričar J, Vavrčík H, Menšík L, Gryc V (2016) The effects of drought on wood formation in Fagus sylvatica during two contrasting years. IAWA J 37:332–348.  https://doi.org/10.1163/22941932-20160137 CrossRefGoogle Scholar
  18. Gregory RA, Wilson BF (1968) A comparison of cambial activity of white spruce in Alaska and New England. Can J Bot 46:733–734.  https://doi.org/10.1139/b68-100 CrossRefGoogle Scholar
  19. Gričar J, Prislan P, Gryc V, Vavrčík H, de Luis M, Čufar K (2014) Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol 34:869–881.  https://doi.org/10.1093/treephys/tpu026 CrossRefGoogle Scholar
  20. IPCC (2013) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  22. Kraus C, Zang C, Menzel A (2016) Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur J For Res 135:1011–1023.  https://doi.org/10.1007/s10342-016-0990-7 CrossRefGoogle Scholar
  23. Lebourgeois F, Breda N, Ulrich E, Granier A (2005) Climate-tree growth relationship of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees Struct Funct 19:385–401.  https://doi.org/10.1007/s00468-004-0397-9 CrossRefGoogle Scholar
  24. Li B, Morris J, Martin EB (2002) Model selection for partial least squares regression. Chemometr Intell Lab 64:79–89.  https://doi.org/10.1016/S0169-7439(02)00051-5 CrossRefGoogle Scholar
  25. Luedeling E, Gassner A (2012) Partial least squares regression for analyzing walnut phenology in California. Agric For Meteorol 158-159:43–52.  https://doi.org/10.1016/j.agrformet.2011.10.020 CrossRefGoogle Scholar
  26. Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730.  https://doi.org/10.1111/j.1365-3040.2010.02176.x CrossRefGoogle Scholar
  27. Luss S, Schwanninger M, Rosner S (2015) Hydraulic traits of Norway spruce sapwood estimated by Fourier transform near-infrared spectroscopy (FT-NIR). Can J For Res 45:625–631.  https://doi.org/10.1139/cjfr-2014-0452 CrossRefGoogle Scholar
  28. Martinez del Castillo E, Longares LA, Gričar J, Prislan P, Gil Pelegrín E, Čufar K, De Luis M (2016) Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Front Plant Sci 7:370.  https://doi.org/10.3389/fpls.2016.00370 CrossRefGoogle Scholar
  29. Menzel A, Helm R, Zang C (2015) Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Front Plant Sci 6:110.  https://doi.org/10.3389/fpls.2015.00110 CrossRefGoogle Scholar
  30. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976.  https://doi.org/10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  31. Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045.  https://doi.org/10.1093/treephys/tps052 CrossRefGoogle Scholar
  32. Moser L, Fonti P, Buntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233.  https://doi.org/10.1093/treephys/tpp108 CrossRefGoogle Scholar
  33. Nguyen HT, Lee B-W (2006) Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur J Agron 24:349–356.  https://doi.org/10.1016/j.eja.2006.01.001 CrossRefGoogle Scholar
  34. Oberhuber W (2017) Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought. Trees 31:467–478.  https://doi.org/10.1007/s00468-016-1468-4 CrossRefGoogle Scholar
  35. Oladi R, Pourtahmasi K, Eckstein D, Brauning A (2011) Seasonal dynamics of wood formation in oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees Struct Funct 25:425–433.  https://doi.org/10.1007/s00468-010-0517-7 CrossRefGoogle Scholar
  36. Penuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140.  https://doi.org/10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  37. Poljanec A, Ficko A, Boncina A (2010) Spatiotemporal dynamic of European beech (Fagus sylvatica L.) in Slovenia, 1970–2005. Forest Ecol Manag 259:2183–2190.  https://doi.org/10.1016/j.foreco.2009.09.022 CrossRefGoogle Scholar
  38. Prislan P, Čufar K, De Luis M, Gričar J (2018) Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiol 38:186–197.  https://doi.org/10.1093/treephys/tpx167 CrossRefGoogle Scholar
  39. Prislan P, Gričar J, de Luis M, Smith KT, Čufar K (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric For Meteorol 180:142–151.  https://doi.org/10.1016/j.agrformet.2013.06.001 CrossRefGoogle Scholar
  40. Prislan P, Koch G, Čufar K, Gričar J, Schmitt U (2009) Topochemical investigations of cell walls in developing xylem of beech (Fagus sylvatica L.). Holzforschung 63:482–490.  https://doi.org/10.1515/HF.2009.079 CrossRefGoogle Scholar
  41. Rathgeber CBK, Rossi S, Bontemps J-D (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438.  https://doi.org/10.1093/aob/mcr168 CrossRefGoogle Scholar
  42. Rathgeber CBK, Santenoise P, Cuny HE (2018) CAVIAR: an R package for checking, displaying and processing wood-formation-monitoring data. Tree Physiol 38:1246–1260.  https://doi.org/10.1093/treephys/tpy054 CrossRefGoogle Scholar
  43. Rohde A, Bastien C, Boerjan W (2011) Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol 31:472–482.  https://doi.org/10.1093/treephys/tpr038 CrossRefGoogle Scholar
  44. Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang E, Mäkinen H, Morin H, Nöjd P, Oberhuber W, Prislan P, Rathgeber CBK, Saracino A, Swidrak I, Treml V (2016) Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob Chang Biol 22:3804–3813.  https://doi.org/10.1111/gcb.13317 CrossRefGoogle Scholar
  45. Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, King GM, Krause C, Morin H, Oberhuber W, Prislan P, Rathgeber CBK (2013) A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Ann Bot 112:1911–1920.  https://doi.org/10.1093/aob/mct243 CrossRefGoogle Scholar
  46. Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97.  https://doi.org/10.1163/22941932-90000139 CrossRefGoogle Scholar
  47. Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA J 27:383–394.  https://doi.org/10.1163/22941932-90000161 CrossRefGoogle Scholar
  48. Rossi S, Girard M-J, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob Chang Biol 20:2261–2271.  https://doi.org/10.1111/gcb.12470 CrossRefGoogle Scholar
  49. Rossi S, Isabel N (2017) Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming. Glob Chang Biol 23:446–454.  https://doi.org/10.1111/gcb.13360 CrossRefGoogle Scholar
  50. Rossi S, Morin H, Deslauriers A, Plourde PY (2011) Predicting xylem phenology in black spruce under climate warming. Glob Chang Biol 17:614–625.  https://doi.org/10.1111/j.1365-2486.2010.02191.x CrossRefGoogle Scholar
  51. Schweingruber FH (1989) Tree rings. Basics and applications of dendrochronology. Kluwer Academic Publishers, Dorecht, Boston, LondonGoogle Scholar
  52. Semeniuc A, Popa I, Timofte AI, Gurean DM (2014) Xylem phenology of Fagus sylvatica in Rarău mountains (eastern Carpathians. Romania). Not Bot Horti Agrobo 42:275–279.  https://doi.org/10.15835/nbha4219546 Google Scholar
  53. Seo JW, Eckstein D, Jalkanen R, Schmitt U (2011) Climatic control of intra- and inter-annual wood-formation dynamics of scots pine in northern Finland. Environ Exp Bot 72:422–431.  https://doi.org/10.1016/j.envexpbot.2011.01.003 CrossRefGoogle Scholar
  54. Stojnić S, Suchocka M, Benito-Garzón M, Torres-Ruiz JM, Cochard H, Bolte A, Cocozza C, Cvjetković B, de Luis M, Martinez-Vilalta J, Ræbild A, Tognetti R, Delzon S (2018) Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiol 38:173–185.  https://doi.org/10.1093/treephys/tpx128 CrossRefGoogle Scholar
  55. Swidrak I, Gruber A, Kofler W, Oberhuber W (2011) Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought. Tree Physiol 31:483–493.  https://doi.org/10.1093/treephys/tpr034 CrossRefGoogle Scholar
  56. Vaganov EA, Hughes MK, Shashkin AV (2006) Environmental control of xylem differentiation. In: Caldwell MM, Heldmaier G, Jackson RB, Lange OL, Mooney HA, Schulze E-D, Sommer U (eds) Growth dynamics of conifer tree rings. Springer Verlag, Berlin, Heidelberg, New York, pp 151–187Google Scholar
  57. Vilà-Cabrera A, Coll L, Martínez-Vilalta J, Retana J (2018) Forest management for adaptation to climate change in the Mediterranean basin: a synthesis of evidence. Forest Ecol Manag 407:16–22.  https://doi.org/10.1016/j.foreco.2017.10.021 CrossRefGoogle Scholar
  58. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8.  https://doi.org/10.1007/s10342-012-0661-2 CrossRefGoogle Scholar
  59. Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218.  https://doi.org/10.1111/j.1365-2435.2010.01748.x CrossRefGoogle Scholar
  60. Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980.  https://doi.org/10.1016/j.agrformet.2011.03.003 CrossRefGoogle Scholar
  61. von Wühlisch G (2008) EUFORGEN technical guidelines for genetic conservation and use for European beech (Fagus sylvatica). Bioversity International, Rome, Italy, p 6Google Scholar
  62. Werf van der GW, Sass-Klaassen U, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112.  https://doi.org/10.1016/j.dendro.2007.03.004 CrossRefGoogle Scholar
  63. Wold S (1995) PLS for multivariate linear modeling. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, New York, pp 195–218Google Scholar
  64. Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. P Natl Acad Sci USA 107:22151–22156.  https://doi.org/10.1073/pnas.1012490107 CrossRefGoogle Scholar
  65. Ziaco E, Truettner C, Biondi F, Bullock S (2018) Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ 41:823–836.  https://doi.org/10.1111/pce.13152 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Slovenian Forestry InstituteLjubljanaSlovenia
  2. 2.Biotechnical Faculty, Department of Wood Science and TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of Geography and Regional PlanningUniversity of ZaragozaZaragozaSpain
  4. 4.Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiCanada
  5. 5.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina

Personalised recommendations