Advertisement

Climatic Change

, Volume 151, Issue 3–4, pp 379–393 | Cite as

Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016

  • Haijun Deng
  • N. C. Pepin
  • Qun Liu
  • Yaning Chen
Article

Abstract

Climate change has been driving terrestrial water storage variations in the high mountains of Asia in the recent decades. This study is based on Gravity Recovery and Climate Experiment (GRACE) data to analyse spatial and temporal variations in terrestrial water storage (TWS) across the Tibetan Plateau (TP) from April 2002 to December 2016. Regional averaged TWS anomaly has increased by 0.20 mm/month (p < 0.01) during the 2002–2012 period, but decreased by − 0.68 mm/month (p < 0.01) since 2012. The seasonal variations in TWS anomalies also showed a decreasing trend from May 2012 to December 2016. TWS variations in the TP also showed significant spatial differences, which were decreasing in southern TP but increasing in the Inner TP. And a declining trend was clearly evident in the seasonal variability of TWS anomalies in the south TP (about − 30 to − 55 mm/a), but increasing in the inner TP (about 10–35 mm/a). Meanwhile, this study links temperature/precipitation changes, glacial retreat and lake area expansion to explain the spatial differences in TWS. Results indicated that precipitation increases and lake area expansion drove increasing TWS in the Inner TP during the 2002–2016 period, but temperature increases and glacial retreat drove decreasing TWS in southern TP.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41807159), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20100303). The authors are grateful to the Chinese Meteorology Administration (http://data.cma.cn/) for providing precipitation and air temperature data. In addition, the authors appreciate the comments provided and encouragement made by the reviewers, the editor, and the associate editor.

Supplementary material

10584_2018_2325_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1894 kb)

References

  1. Bai P, Liu X, Yang T, Liang K, Liu C (2016) Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. J Geophys Res Atmos 121:12,180–12,197.  https://doi.org/10.1002/2016JD025501 CrossRefGoogle Scholar
  2. Chen J, Rodell M, Wilson C, Famiglietti J (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32(14):L14405.  https://doi.org/10.1029/2005GL022964
  3. Chen, J.L., Wilson, C.R., Blankenship, D.D., Tapley, B.D., 2006. Antarctic mass rates from GRACE. Geophysical Research Letters, 33(11): n/a-n/a.  https://doi.org/10.1029/2006GL026369
  4. Chen Z, Chen Y, Li W (2012) Response of runoff to change of atmospheric 0°C level height in summer in arid region of Northwest China. Sci China Earth Sci 55(9):1533–1544.  https://doi.org/10.1007/s11430-012-4472-6 CrossRefGoogle Scholar
  5. Cheng M, Ries J, Tapley B (2011) Variations of the earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409.  https://doi.org/10.1029/2010JB000850 
  6. Deng H, Chen Y (2017) Influences of recent climate change and human activities on water storage variations in Central Asia. J Hydrol 544:46–57.  https://doi.org/10.1016/j.jhydrol.2016.11.006
  7. Deng H, Pepin N, Chen Y (2017) Changes of snowfall under warming in the Tibetan Plateau. J Geophys Res: Atmospheres 122(14):7323–7341.  https://doi.org/10.1002/2017JD026524 CrossRefGoogle Scholar
  8. Geruo A, Wahr J, Zhong S (2012) Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192(2):557–572.  https://doi.org/10.1093/gji/ggs030
  9. Guo J, Mu D, Liu X, Yan H, Sun Z, Guo B (2016) Water storage changes over the Tibetan Plateau revealed by GRACE Mission. Acta Geophysica 64(2):463–476CrossRefGoogle Scholar
  10. Guo W, Xu J, Liu S, Shangguan D, Wu L, Yao X, Zhao J, Liu Q, Jiang Z, Li P, Wei J, Bao W, Yu P, Ding L, Li G, Ge C, Wang Y (2014) The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou.  https://doi.org/10.3972/glacier.001.2013.db
  11. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349(3–4):350–363.  https://doi.org/10.1016/j.jhydrol.2007.11.009 CrossRefGoogle Scholar
  12. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196.  https://doi.org/10.1016/S0022-1694(97)00125-X CrossRefGoogle Scholar
  13. Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(60):727–732.  https://doi.org/10.1029/WR020i006p00727 CrossRefGoogle Scholar
  14. Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res 48(7):W07525.  https://doi.org/10.1029/2011WR011291 CrossRefGoogle Scholar
  15. Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385.  https://doi.org/10.1126/science.1183188 CrossRefGoogle Scholar
  16. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386):514–518.  https://doi.org/10.1038/nature10847 CrossRefGoogle Scholar
  17. Jin S, Zou F (2015) Re-estimation of glacier mass loss in Greenland from GRACE with correction of land–ocean leakage effects. Glob Planet Chang 135:170–178.  https://doi.org/10.1016/j.gloplacha.2015.11.002
  18. Khadka D, Babel MS, Shrestha S, Tripathi NK (2014) Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J Hydrol 511:49–60.  https://doi.org/10.1016/j.jhydrol.2014.01.005 CrossRefGoogle Scholar
  19. Liu J, Zhang W, Liu T, Li Q (2018) Runoff dynamics and associated multi-scale responses to climate changes in the middle reach of the Yarlung Zangbo River Basin, China. Water 10:295.  https://doi.org/10.3390/w10030295 CrossRefGoogle Scholar
  20. Long D, Scanlon BR, Longuevergne L, Sun AY, Fernando DN, Save H (2013) GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40(13):3395–3401.  https://doi.org/10.1002/grl.50655 CrossRefGoogle Scholar
  21. Long D, Yang Y, Wada Y, Hong Y, Liang W, Chen Y, Yong B, Hou A, Wei J, Chen L (2015) Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens Environ 168:177–193.  https://doi.org/10.1016/j.rse.2015.07.003 CrossRefGoogle Scholar
  22. Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Clim Change 4(7):587–592.  https://doi.org/10.1038/nclimate2237 CrossRefGoogle Scholar
  23. Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290(1–2):30–36.  https://doi.org/10.1016/j.epsl.2009.11.053 CrossRefGoogle Scholar
  24. Ramillien G, Frappart F, Güntner A, Ngo-Duc T, Cazenave A, Laval K (2006) Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour Res 42(10):W10403.  https://doi.org/10.1029/2005WR004331
  25. Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20):L20504.  https://doi.org/10.1029/2004GL020873 CrossRefGoogle Scholar
  26. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002.  https://doi.org/10.1038/nature08238
  27. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389.  https://doi.org/10.1080/01621459.1968.10480934 CrossRefGoogle Scholar
  28. Singh P, Bengtsson L (2004) Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Process 18(13):2363–2385.  https://doi.org/10.1002/hyp.1468 CrossRefGoogle Scholar
  29. Song C, Huang B, Ke L (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35.  https://doi.org/10.1016/j.rse.2013.03.013 CrossRefGoogle Scholar
  30. Song C, Ke L, Huang B, Richards KS (2015) Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: from a climate perspective? Glob Planet Chang 124:1–9.  https://doi.org/10.1016/j.gloplacha.2014.11.001 CrossRefGoogle Scholar
  31. Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim Change 2(10):725–731.  https://doi.org/10.1038/NCLIMATE1592 CrossRefGoogle Scholar
  32. Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2015) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob Planet Chang 136:82–95.  https://doi.org/10.1016/j.gloplacha.2015.10.012 CrossRefGoogle Scholar
  33. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44(2):W02433.  https://doi.org/10.1029/2006WR005779 CrossRefGoogle Scholar
  34. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res: Solid Earth 103(B12):30205–30229.  https://doi.org/10.1029/98JB02844 CrossRefGoogle Scholar
  35. Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401.  https://doi.org/10.1029/2005GL025305
  36. Wan W, Long D, Hong Y, Ma Y, Yuan Y, Xiao P, Duan H, Han Z, Gu X (2016) A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data 3:160039.  https://doi.org/10.1038/sdata.2016.39 CrossRefGoogle Scholar
  37. Wang S, Zhang M, Pepin NC, Li Z, Sun M, Huang X, Wang Q (2014) Recent changes in freezing level heights in High Asia and their impact on glacier changes. J Geophys Res: Atmospheres 119(4):1753–1765.  https://doi.org/10.1002/2013JD020490 CrossRefGoogle Scholar
  38. Wang W, Cui W, Wang XJ, Chen X (2016) Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. J Hydrometeorol 17:2815–2833.  https://doi.org/10.1175/JHM-D-15-0191.1 CrossRefGoogle Scholar
  39. Wang Y, Zhang Y, Chiew F, Lu Z, Li H, Qin G (2017) Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau. Sci Rep 7(1):15458.  https://doi.org/10.1038/s41598-017-15678-x
  40. Xavier L, Becker M, Cazenave A, Longuevergne L, Llovel W, Rotunno FOC (2010) Interannual variability in water storage over 2003–2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens Environ 114(8):1629–1637.  https://doi.org/10.1016/j.rse.2010.02.005 CrossRefGoogle Scholar
  41. Xiang L, Wang H, Steffen H, Wu P, Jia L, Jiang L, Shen Q (2016) Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet Sci Lett 449:228–239.  https://doi.org/10.1016/j.epsl.2016.06.002 CrossRefGoogle Scholar
  42. Xu ZX, Gong TL, Li JY (2008) Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol Process 22(16):3056–3065.  https://doi.org/10.1002/hyp.6892 CrossRefGoogle Scholar
  43. Xu B, Cao J, Hansen J, Yao T, Joswia D, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. PNAS 106 (52):22114–22118.  https://doi.org/10.1073/pnas.0910444106
  44. Xu W, M L, Ma M, Zhang W (2017) Spatial–temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau. J Climate 30(4):1521–1533.  https://doi.org/10.1175/JCLI-D-15-0732.1
  45. Yang K, Wu H, Qin J, Lin C, Tang WJ, Chen YY (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91.  https://doi.org/10.1016/j.gloplacha.2013.12.001
  46. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D, Pu J (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim Change 2(9):663–667.  https://doi.org/10.1038/NCLIMATE1580 CrossRefGoogle Scholar
  47. Yi S, Sun W (2014) Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J Geophys Res: Solid Earth 119(3):2504–2517.  https://doi.org/10.1002/2013JB010860
  48. You Q, Min J, Zhang W, Pepin N, Kang S (2014) Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn 45(3):791–806.  https://doi.org/10.1007/s00382-014-2310-6 CrossRefGoogle Scholar
  49. Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271.  https://doi.org/10.1016/S0022-1694(01)00594-7 CrossRefGoogle Scholar
  50. Zaitchik BF, Rodell M, Olivera F (2010) Evaluation of the global land data assimilation system using global river discharge data and a source- to -sink routing scheme. Water Resour Res 46:W06507.  https://doi.org/10.1029/2009WR007811 CrossRefGoogle Scholar
  51. Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130.  https://doi.org/10.1002/grl.50462
  52. Zhang G, Yao T, Shum C, Yi S, Yang K, Xie H, Feng W, Bolch T, Wang L, Behrangi A, Zhang H, Wang W, Xiang Y, Yu J (2017) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44(11):5550–5560.  https://doi.org/10.1002/2017GL073773

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Geographical SciencesFujian Normal UniversityFuzhouChina
  2. 2.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  3. 3.Department of GeographyUniversity of PortsmouthPortsmouthUK
  4. 4.Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial DisastersFuzhouChina
  5. 5.State Key Laboratory Breeding Base of Humid Subtropical Mountain EcologyFuzhouChina

Personalised recommendations