Advertisement

Climatic Change

, Volume 149, Issue 3–4, pp 443–456 | Cite as

Incipient road to extinction of a keystone herbivore in south-eastern Europe: Harting’s vole (Microtus hartingi) under climate change

  • Boris Kryštufek
  • Tanya Zorenko
  • Vasileios Bontzorlos
  • Ahmad Mahmoudi
  • Nasko Atanasov
  • Danijel IvajnšičEmail author
Article

Abstract

Climate forcing, which is blamed for the decennial decline in the dynamics of vole populations in Central and Northern Europe, may have similar effects in southern (Mediterranean) Europe, even more so since the region is especially vulnerable to global change. In the absence of population monitoring, we investigated the temporal development and geospatial pattern of the habitat of Harting’s vole (Microtus hartingi) in southeast Europe (SEE) by relying on data regarding its presence, the most recent freely available geospatial datasets and state-of-the-art presence-only Species Distribution Modelling (SDM) techniques. Results indicate that (1) the potential habitat of Harting’s vole was perhaps stable over the last 6000 years - modelling predictions are in conjunction with scarce fossil evidence, which points to repeated colonisations from Asia Minor punctuated by extinctions in SEE; (2) fragmentation of the potential habitat in SEE, which may have already begun in the Last Glacial Maximum, and will most likely continue in the near future; and (3) Harting’s vole could disappear by the end of the century if more pessimistic climate change scenarios become reality. While climate change is suppressing the population dynamics of the keystone grass-eating voles from temperate and boreal ecosystems, it is about to annihilate their Mediterranean counterpart. This will result in a far more severe impact on community restructuring in the Mediterranean ecosystems than elsewhere. Long-term population monitoring is desperately needed in SEE to hone the ability to more accurately predict the impacts of climate change.

Notes

Acknowledgements

We would like to thank Karolyn Close for editing for grammar and style. B. K. acknowledges the financial support from the Slovenian Research Agency (research core funding no. P1-0255).

Supplementary material

10584_2018_2259_MOESM1_ESM.docx (14 kb)
ESM 1 Ecogeographical variables, time windows, global climate models and scenarios used in the modelling procedure. (DOCX 13 kb)
10584_2018_2259_MOESM2_ESM.docx (14 kb)
ESM 2 Eigenvalues and eigenvectors of bioclimatic variables. (DOCX 13 kb)
10584_2018_2259_MOESM3_ESM.docx (14 kb)
ESM 3 Pearson’s and Cramer’s correlation coefficients for model variables. (DOCX 13 kb)

References

  1. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudoabsences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  2. Boria RA, Olson LE, Goodman SM, Anderson RA (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77CrossRefGoogle Scholar
  3. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700CrossRefGoogle Scholar
  4. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the speckled wood butterfly (Pararge aegeria L). Landsc Ecol 18(6):561–573CrossRefGoogle Scholar
  5. Cornulier T, Yoccoz NG, Bretagnolle V et al (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66.Google Scholar
  6. Development Core Team R. (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3–900051–07-0, http://www.Rproject.org
  7. Dyderski MK, Paz S, Frelich LE, Jagodzinski AM How much does climate change threaten European forest tree species distributions? Glob Change Biol 2017, 2017:1–14Google Scholar
  8. Eastwood WJ (2004) East Mediterranean vegetation and climate change. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: Pattern and process in the European hotspot. Kluwer, London, pp 25–48CrossRefGoogle Scholar
  9. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151CrossRefGoogle Scholar
  10. ESRI (2010) ArcGIS Desktop: Release 9.3. Environmental Systems Research Institute, RedlandsGoogle Scholar
  11. Eastman R (2016) TerrSet. Worcester. Clark University, MAGoogle Scholar
  12. Gardner J, Peters A, Kearney M, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? TREE 26:285–291Google Scholar
  13. Griffiths HI, Kryštufek B, Reed JM (2004) Balkan biodiversity: Pattern and process in the Europ's hotspot. Kluwer Acad. Press, LondonCrossRefGoogle Scholar
  14. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  15. Goren-Inbar N, Feibel CS, Verosub KL, Melamed Y, Kislev ME, Tchernov E, Saragusti I (2000) Pleistocene Milestones on the Out-of-Africa Corridor at Gesher Benot Ya’aqov, Israel. Science 289(5481):944–947CrossRefGoogle Scholar
  16. Harting JE (1893) Observations on the common field vole of Thessaly. The Zoologist 3rd series 17(196):139–145Google Scholar
  17. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5):773–785CrossRefGoogle Scholar
  18. Hernandez PA, Franke I, Herzoh SK, Pacheco V, Paniagua L, Quintana HL, Soto A, Swenson JJ, Tovar C, Valqui TH, Vargas J, Young BE (2008) Predicting species distributions in poorly-studied landscapes. Biodiversity Conserv 17(6):1353–1366CrossRefGoogle Scholar
  19. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688CrossRefGoogle Scholar
  20. Kerey IE, Meric E, Kelling G, Brenner RA, Dogan AU (2004) Black Sea-Marmara Sea Quaternary connections: new data from the Bosphorus, Istanbul, Turkey. Paleogeogr Paleocl Paleoecol 204(3–4):277–295CrossRefGoogle Scholar
  21. Kerr JT, Dobrowski SZ (2013) Predicting the impacts of global change on species, communities and ecosystems: it takes time. Global Ecol Distr 22(3):261–263CrossRefGoogle Scholar
  22. Keymer JE, Marquet PA, Velasco-Hernández JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156(5):478–4945CrossRefGoogle Scholar
  23. Kowalski K (2001) Pleistocene rodents of Europe. Folia Quart 72:1–389Google Scholar
  24. Kryštufek B (1999) Microtus guentheri (Danford & Alston, 1880). In: Mitchell-Jones AJ, Amori G, Bogdanowicz W, Kryštufek B, Reijnders PJH, Spitzenberger F, Stubbe M, Thissen JBM, Vohralík V, Zima J (eds) The Atlas of European Mammals. Poyser Natural History, London, pp 238–239Google Scholar
  25. Kryštufek B, Griffiths HI (1999) Mediterranean v. continental small mammal communities and the environmental degradation of the Dianric Alps. J Biogeography 26:167–177CrossRefGoogle Scholar
  26. Kryštufek B, Bužan EV, Vohralik V, Zareie R, Özkan B (2009) Mithochondrial cytochrom b sequence yield new insight into the speciation of social voles in southwest. Asia Biol J Linn Soc 98(1):121–128CrossRefGoogle Scholar
  27. Leigh KA, Zenger KR, Tammen I, Raadsma HW (2012) Loss of genetic diversity in an outbreeding species: small population effects in the African wild dog (Lycaon pictus). Conserv Genet 13(3):767–777CrossRefGoogle Scholar
  28. Lilles TM, Kiefer RW, Chipman JW (2004) Remote Sensing and Image Interpretation. John Wiley & SonsGoogle Scholar
  29. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Oikos 28(3):385–393Google Scholar
  30. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(1052–5):1052–1055CrossRefGoogle Scholar
  31. Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2009) Biogeography, 4th edn. Sunderland, SinauerGoogle Scholar
  32. Johnson RD, Kasischke ES (1998) Change vector analysis: A technique for the multispectral monitoring of land cover and condition. Int J Remote Sens 19(3):411–426.  https://doi.org/10.1080/014311698216062 CrossRefGoogle Scholar
  33. Marder O, Malinsky-Buller A, Shahack-Gross R, Ackermann O, Ayalon A, Bar-Matthews M, Goldsmith Y, Inbar M, Rabinovich R, Hovers E (2011) Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site at Revadim (Israel). J Hum Evol 60(4):508–522CrossRefGoogle Scholar
  34. Martinez-Meyer E (2005) Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in Species' Potential Distributions. Biodiv Info 2:42–55Google Scholar
  35. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: Spatial Pattern Analysis Program for Categorical Maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed on Oct. 30, 2016.
  36. McHugh CMG, Gurung D, Giosan L, Ryan WBF, Mart Y, Sancar U, Burckle L, Çagatay MN (2008) The last reconnection of the Marmara Sea (Turkey) to the World Ocean: A paleoceanographic and paleoclimatic perspective. Mar Geol 255(1–2):64–82CrossRefGoogle Scholar
  37. Mühlner S, Kormann U, Schmidt-Entling MH, Herzog F, Bailey D (2010) Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards. J Landscape Ecol 3(1):52–63Google Scholar
  38. Ondrias JC (1965) Contribution to the knowledge of Microtus guetheri hartingi from Thebes, Greece. Mammalia 29(4):489–506CrossRefGoogle Scholar
  39. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A, CAPE Last Interglacial Project members (2006) Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science 311(5768):1751–1753CrossRefGoogle Scholar
  40. Pardiñas UFJ, Myers P, León-Paniagua L, Ordoñez-Garza N, Cook JA, Kryštufek B, Haslauer R, Bradley R, Shenbrot G, Patton JL (2017) Family Cricetidae (True Hamsters, Voles, Lemmings and New World Rats and Mice). In: Wilson DE, Lacher TE Jr, Mittermeier RA (eds) Handbook of the Mammals of the World, vol 7. Rodents II. Lynx Edicions, Barcelona, pp 204–535Google Scholar
  41. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: newextensions and a comprehensive evaluation. Ecography 31(2):161–175CrossRefGoogle Scholar
  42. Phillips SJ, Andersonb RP, Schapired RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Mod 190(3–4):231–259CrossRefGoogle Scholar
  43. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting, and evaluation. J Biogeography 41:629–643CrossRefGoogle Scholar
  44. Rose RK, Birney EC (1985) Community ecology. In: Tamarin RH (ed) Biology of New World Microtus, American Society of Mammalogists, Special Publ No 8, Am Soc Mammal, pp:310-339.  https://doi.org/10.5962/bhl.title.39513
  45. Rempel RS, Kaukinen D, Carr AP (2012) Patch Analyst and Patch Grid. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, OntarioGoogle Scholar
  46. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol. 169:156–173CrossRefGoogle Scholar
  47. Santel W, von Koenigswald W (1998) Preliminary report on the middle Pleistocene small mammal fauna from Yarimburgaz Cave in Turkish Thrace. Eiszeitalter u Gegenwart 48(1):162–169Google Scholar
  48. Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, MArtin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671.  https://doi.org/10.1126/science.aaf767
  49. Schmidt NM, Ims RA, Høye TT, Gilg O, Hansen LH, Hansen J, Lund M, Fuglei E, Mads C, Forchhammer MC, Sittler B (2012) Response of an arctic predator guild to collapsing lemming cycles. Proc R Soc B 279:4417–4422.  https://doi.org/10.1098/rspb.2012.1490
  50. Thanou E, Tryfonopoulos G, Chondropoulos B, Fraguedakis-Tsolis S (2012) Comparative phylogeography of the five Greek vole species infers the existence of multiple South Balkan subrefugia. Ital J Zool 79(3):363–376CrossRefGoogle Scholar
  51. Thorne LH, Johnston DW, Urban DL, Tyne J, Bejder L, Baird RW, Yin S, Rickards SH, Deakos MH, Mobley JR, Pack AA, Chapla Hill M (2012) Predictive modeling of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. PLoS ONE 7(8):e43167.  https://doi.org/10.1371/journal.pone.0043167 CrossRefGoogle Scholar
  52. Tischendorf L, Fahring L (2000) On the usage and measurement of landscape connectivity. Oikos 90(1):7–19CrossRefGoogle Scholar
  53. Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon P (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13(4):397–405CrossRefGoogle Scholar
  54. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573CrossRefGoogle Scholar
  55. Wilczyński J, Tomek T, Nadachowski A, Miękina B, Rzebik-Kowalska B, Pereswiet-Soltan A, Stworzewicz E, Szyndlar Z, Marciszak A, Lõugas L (2016) Faunal record and environmental changes during Holocene and Pleistocene. In: Kaczanowska M, Kozłowski J, Sampson A (Eds.). The Sarkenos Cave at Akraephnion, Boeotia, Greece. Vol. II. The Early Neolothic, the Mesolithic and the final Palaeolithic. Polish Acad Arts Sci, Krákow, pp 63–150Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Slovenian Museum of Natural HistoryLjubljanaSlovenia
  2. 2.University of LatviaRigaLatvia
  3. 3.Center for Research and Technology – Hellas (CERTH) Institute for Bio-Economy and Agri-Technology (iBO)VolosGreece
  4. 4.Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious DiseasesPasteur Institute of IranTehranIran
  5. 5.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  6. 6.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations