Climatic Change

, Volume 147, Issue 3–4, pp 411–425 | Cite as

Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool

  • A. Casanueva
  • J. Bedia
  • S. Herrera
  • J. Fernández
  • J. M. Gutiérrez
Article

Abstract

The use and development of bias correction (BC) methods has grown fast in recent years, due to the increased demand of unbiased projections by many sectoral climate change impact applications. Case studies are frequently based on multi-variate climate indices (CIs) combining two or more essential climate variables that are frequently individually corrected prior to CI calculation. This poses the question of whether the BC method modifies the inter-variable dependencies and eventually the climate change signal. The direct bias correction of the multi-variate CI stands as a usual alternative, since it preserves the physical and temporal coherence among the primary variables as represented in the dynamical model output, at the expense of incorporating the individual biases on the CI with an effect difficult to foresee, particularly in the case of complex CIs bearing in their formulation non-linear relationships between components. Such is the case of the Fire Weather Index (FWI), a meteorological fire danger indicator frequently used in forest fire prevention and research. In the present work, we test the suitability of the direct BC approach on FWI as a representative multi-variate CI, assessing its performance in present climate conditions and its effect on the climate change signal when applied to future projections. Moreover, the results are compared with the common approach of correcting the input variables separately. To this aim, we apply the widely used empirical quantile mapping method (QM), adjusting the 99 empirical percentiles. The analysis of the percentile adjustment function (PAF) provides insight into the effect of the QM on the climate change signal. Although both approaches present similar results in the present climate, the direct correction introduces a greater modification of the original change signal. These results warn against the blind use of QM, even in the case of essential climate variables or uni-variate CIs.

Notes

Acknowledgements

All the statistical downscaling experiments have been computed using the MeteoLab software (http://www.meteo.unican.es/software/meteolab), an open-source Matlab toolbox for statistical downscaling. The authors are grateful to the Spanish Meteorological Agency (AEMET) for providing the observational data and Erika Coppola from the International Center of Theoretical Physics (ICTP) and Erik van Meijgaard from the Royal Netherlands Meteorological Institute (KNMI) for making available the ENSEMBLES RegCM3 and RACMO2 regional climate models, respectively. We also thank two anonymous referees for their useful comments that helped to improve the original manuscript.

Supplementary material

10584_2018_2167_MOESM1_ESM.pdf (1.3 mb)
(PDF 1.34 MB)

References

  1. Addor N, Rohrer M, Furrer R, Seibert J (2016) Propagation of biases in climate models from the synoptic to the regional scale: implications for bias adjustment. J Geophys Res.-Atmos 121(5):2075–2089.  https://doi.org/10.1002/2015JD024040 CrossRefGoogle Scholar
  2. Andrews D (1974) A robust method for multiple linear-regression. Technometrics 16(4):523–531.  https://doi.org/10.2307/1267603 CrossRefGoogle Scholar
  3. Bedia J, Herrera S, San-Martín D, Koutsias N, Gutiérrez JM (2013) Robust projections of fire weather index in the mediterranean using statistical downscaling. Clim Chang 120(1-2):229–247.  https://doi.org/10.1007/s10584-013-0787-3 CrossRefGoogle Scholar
  4. Bedia J, Herrera S, Camia A, Moreno JM, Gutiérrez JM (2014) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim Chang 122(1-2):185–199.  https://doi.org/10.1007/s10584-013-1005-z CrossRefGoogle Scholar
  5. Bedia J, Herrera S, Gutiérrez JM, Benali A, Brands S, Mota B, Moreno JM (2015) Global patterns in the sensitivity of burned area to fire-weather: implications for climate change. Agric For Meteorol 214215:369–379.  https://doi.org/10.1016/j.agrformet.2015.09.002 CrossRefGoogle Scholar
  6. Bedia J, Golding N, Casanueva A, Iturbide M, Buontempo C, Gutierrez JM (2017) Seasonal predictions of Fire Weather Index: paving the way for their operational applicability in Mediterranean Europe. Climate Services.  https://doi.org/10.1016/j.cliser.2017.04.001
  7. Brands S, Herrera S, Gutiérrez J (2014) Is Eurasian snow cover in October a reliable statistical predictor for the wintertime climate on the Iberian Peninsula?. Int J Climatol 34(5):1615–1627.  https://doi.org/10.1002/joc.3788 CrossRefGoogle Scholar
  8. Cannon AJ (2016) Multivariate bias correction of climate model output: matching marginal distributions and intervariable dependence structure. J Clim 29(19):7045–7064.  https://doi.org/10.1175/JCLI-D-15-0679.1  https://doi.org/10.1175/JCLI-D-15-0679.1 CrossRefGoogle Scholar
  9. Casanueva A, Frías MD, Herrera S, San-Martín D, Zaninovic K, Gutiérrez JM (2014) Statistical downscaling of climate impact indices: testing the direct approach. Clim Chang 127(3-4):547–560.  https://doi.org/10.1007/s10584-014-1270-5 CrossRefGoogle Scholar
  10. Casanueva A, Kotlarski S, Herrera S, Fernández J, Gutiérrez J, Boberg B, Colette A, Christensen OB, Goergen K, Jacob D, Keuler K, Nikulin G, Teichmann C, Vautard R (2016) Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations. Clim Dyn 47:719–737.  https://doi.org/10.1007/s00382-015-2865-x CrossRefGoogle Scholar
  11. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81(1):1–6.  https://doi.org/10.1007/s10584-006-9211-6  https://doi.org/10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  12. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35(20):L20,709.  https://doi.org/10.1029/2008GL035694 CrossRefGoogle Scholar
  13. Cofiño A, Bedia J, Iturbide M, Vega M, Herrera S, Fernández J, Frías M, Manzanas R, Gutiérrez J (2017) The ecoms user data gateway: towards seasonal forecast data provision and research reproducibility in the era of climate services. Climate Services.  https://doi.org/10.1016/j.cliser.2017.07.001. http://www.sciencedirect.com/science/article/pii/S2405880717300079
  14. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57(1-2):16–26.  https://doi.org/10.1016/j.gloplacha.2006.11.030 CrossRefGoogle Scholar
  15. Dimitrakopoulos A, Bemmerzouk A, Mitsopoulos I (2011) Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol Appl 18:83–93CrossRefGoogle Scholar
  16. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions “should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci 16(9):3391–3404.  https://doi.org/10.5194/hess-16-3391-2012 CrossRefGoogle Scholar
  17. Gobiet A, Suklitsch M, Heinrich G (2015) The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal. Hydrol Earth Syst Sci 19(10):4055–4066.  https://doi.org/10.5194/hess-19-4055-2015 CrossRefGoogle Scholar
  18. Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeor 12(4):556–578.  https://doi.org/10.1175/2011JHM1336.1 CrossRefGoogle Scholar
  19. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115(D21):D21,117.  https://doi.org/10.1029/2010JD013936 CrossRefGoogle Scholar
  20. Herrera S, Bedia J, Gutiérrez J, Fernández J, Moreno J (2013) On the projection of future fire danger conditions with various instantaneous/mean-daily data sources 118:827–840Google Scholar
  21. IPCC (2014). In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1132Google Scholar
  22. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333.  https://doi.org/10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  23. Li C, Sinha E, Horton DE, Diffenbaugh NS, Michalak AM (2014) Joint bias correction of temperature and precipitation in climate model simulations. J Geophys Res.-Atmos 119(23):13,153–13,162.  https://doi.org/10.1002/2014JD022514 CrossRefGoogle Scholar
  24. Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Climate 26(6):2137–2143.  https://doi.org/10.1175/JCLI-D-12-00821.1 CrossRefGoogle Scholar
  25. Maraun D (2016) Bias correcting climate change simulations—a critical review. Current Climate Change Reports 2(4):211–220.  https://doi.org/10.1007/s40641-016-0050-x CrossRefGoogle Scholar
  26. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez J, Hagemann S, Richter I, Soares PMM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nature Climate Change 7:764–773.  https://doi.org/10.1038/nclimate3418 CrossRefGoogle Scholar
  27. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area 31:85–95Google Scholar
  28. Muerth MJ, Gauvin St-Denis B, Ricard S, Velázquez JA, Schmid J, Minville M, Caya D, Chaumont D, Ludwig R, Turcotte R (2013) On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol Earth Syst Sci 17(3):1189–1204.  https://doi.org/10.5194/hess-17-1189-2013. https://www.hydrol-earth-syst-sci.net/17/1189/2013/ CrossRefGoogle Scholar
  29. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konar A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Amer Meteor Soc 88(9):1395–1409.  https://doi.org/10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  30. Panofsky HA, Brier GW (1968) Some applications of statistics to meteorology University Park : Penn. State University, College of Earth and Mineral SciencesGoogle Scholar
  31. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. P Natl Acad Sci USA 107(45):19,167–19,170.  https://doi.org/10.1073/pnas.1003669107 CrossRefGoogle Scholar
  32. Piani C, Haerter JO, Coppola E (2010a) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99 (1-2):187–192.  https://doi.org/10.1007/s00704-009-0134-9
  33. Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010b) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395(3):199–215.  https://doi.org/10.1016/j.jhydrol.2010.10.024. http://www.sciencedirect.com/science/article/pii/S0022169410006475
  34. Quintana Seguí P, Ribes A, Martin E, Habets F, Boé J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383 (1-2):111–124.  https://doi.org/10.1016/j.jhydrol.2009.09.050 CrossRefGoogle Scholar
  35. Rocheta E, Evans JP, Sharma A (2014) Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ Res Lett 9(12):124,010. http://stacks.iop.org/1748-9326/9/i=12/a=124010 CrossRefGoogle Scholar
  36. San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A (2013) The European forest fire information system in the context of environmental policies of the European Union. Forest Policy Econ 29(SI):19–25.  https://doi.org/10.1016/j.forpol.2011.08.012 CrossRefGoogle Scholar
  37. Stocks B, Fosberg M, Lynham T, Mearns L, Wotton B, Yang Q, Jin J, Lawrence K, Hartley G, Mason J, McKenney D (1998) Climate change and forest fire potential in russian and canadian boreal forests. Clim Chang 38:1–13CrossRefGoogle Scholar
  38. Teng J, Potter NJ, Chiew FHS, Zhang L, Wang B, Vaze J, Evans JP (2015) How does bias correction of regional climate model precipitation affect modelled runoff?. Hydrol Earth Syst Sci 19(2):711–728.  https://doi.org/10.5194/hess-19-711-2015 CrossRefGoogle Scholar
  39. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456-457:12–29CrossRefGoogle Scholar
  40. Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Chang 112(2):449–468.  https://doi.org/10.1007/s10584-011-0224-4 CrossRefGoogle Scholar
  41. Turco M, Sanna A, Herrera S, Llasat MC, Gutiérrez JM (2013) Large biases and inconsistent climate change signals in ensembles regional projections. Clim Chang 120(4):859–869.  https://doi.org/10.1007/s10584-013-0844-y  https://doi.org/10.1007/s10584-013-0844-y CrossRefGoogle Scholar
  42. van der Linden P, Mitchell J (eds.) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  43. van Meijgaard E, van Ulft L, van de Berg W, Bosveld B, van der Hurk B, Gand Siebesma LA (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Tech Rep 302Google Scholar
  44. van Wagner C, Pickett T (1985) Equations and FORTRAN program for the Canadian forest fire weather index system. Forestry Tech. Rep. 33 Canadian Forestry Service, Ottawa, CanadaGoogle Scholar
  45. van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index. Forestry Tech. Rep. 35 Canadian Forestry Service, Ottawa, CanadaGoogle Scholar
  46. Viegas D, Bovio G, Ferreira A, Nosenzo A, Sol B (1999) Comparative study of various methods of fire danger evaluation in Southern Europe. Int J Wildland Fire 9:235–246CrossRefGoogle Scholar
  47. Vrac M, Friederichs P (2015) Multivariate–intervariable, spatial, and temporal–bias correction. J Climate 28(1):218–237.  https://doi.org/10.1175/JCLI-D-14-00059.1 CrossRefGoogle Scholar
  48. Wilby RL, Hay LE, Gutowski WJ, Arritt RW, Takle ES, Pan Z, Leavesley GH, Clark MP (2000) Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett 27(8):1199–1202.  https://doi.org/10.1029/1999GL006078 CrossRefGoogle Scholar
  49. Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Chang 120(4):871–887.  https://doi.org/10.1007/s10584-013-0845-x CrossRefGoogle Scholar
  50. Williams A, Karoly D, Tapper N (2001) The sensitivity of australian fire danger to climate change. Clim Chang 49(1-2):171–191CrossRefGoogle Scholar
  51. Wotton BM (2009) Interpreting and using outputs from the Canadian forest fire danger rating system in research applications. Environ Ecol Stat 16:107–131.  https://doi.org/10.1007/s10651-007-0084-2 CrossRefGoogle Scholar
  52. Yang W, Gardelin M, Olsson J, Bosshard T (2015) Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden. Nat Hazards Earth Syst Sci 15(9):2037–2057.  https://doi.org/10.5194/nhess-15-2037-2015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Meteorology Group, Department of Applied Mathematics and Computer SciencesUniversity of CantabriaSantanderSpain
  2. 2.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland
  3. 3.Predictia Intelligent Data SolutionsSantanderSpain
  4. 4.Meteorology Group, Institute of Physics of CantabriaCSIC-University of CantabriaSantanderSpain

Personalised recommendations