Advertisement

Climatic Change

, Volume 147, Issue 3–4, pp 427–439 | Cite as

Land, Water, and Wind Watershed Cycle: a strategic use of water, land and wind for climate change adaptation

  • Julian D. Hunt
  • Walter Leal Filho
Article

Abstract

The increase in population and the improvement of life standards are stretching the boundaries between water-energy-land management, and demanding innovative and holistic solutions. This article proposes an approach for increasing the water availability of two or more water basins taking into consideration land use and wind patterns, and was named Land, Water, and Wind Watershed Cycle (L3WC). This approach can be applied to one watershed or a combination of watersheds. In the first case, if wind patterns blow mainly in the opposite direction of the main river flow, plantations with high water demand should be focused on the lowest part of the basin. The transpired moisture would then return to the basin with the wind and possibly increase the water availability of the basin. Applying this method to a series of basins, water is transposed from one basin to another, used for irrigated agriculture, returned to the atmosphere with evapotranspiration and pushed back to the basin where the water was extracted by the wind. Case studies of this methodology are presented in the São Francisco basin and between the Tocantins, Amazonas, and Paraná basins and the São Francisco basin in Brazil. The São Francisco basin was selected because it is located in a dry region, its flow has considerably reduced in the past decade and because the trade winds blow constantly from the ocean into the continent all year around. L3WC is a strategy to plan the allocation of water consumption in a watershed, taking into account wind patterns to support the sustainable development of a region. It has the potential of increasing water availability and creating a climate change adaptation mechanism to control the climate and reduce vulnerability to climatic variations.

References

  1. Amarante O, Brower M, Zack J, Sá A (2001) Atlas do Potencial Eólico Brasileiro. CEPEL, BrasíliaGoogle Scholar
  2. Brazilian National Water Agency. Hidroweb, Sistema Nacional de Informações sobre Recursos Hídricos, [Online]. Available: http://www.snirh.gov.br/hidroweb/. [Accessed 07 01 2018]
  3. Brazilian National Water Agency. Balanço Hídrico Quantitativo, ANA, [Online]. Available: http://portal1.snirh.gov.br/ana/apps/webappviewer/index.html?id=ac0a9666e1f340b387e8032f64b2b85a. [Accessed 21 05 2017]
  4. Brazilian National Water Agency. Disponibilidade e Demandas de Recursos Hídricos no Brasil, ANA, [Online]. Available: http://arquivos.ana.gov.br/planejamento/estudos/sprtew/2/2-ANA.swf. [Accessed 17 07 2016]
  5. Brazilian Electricity Grid Operator (2004) Evaporação Líquidas nas Usinas Hidrelétricas. ONS, Rio de JaneiroGoogle Scholar
  6. Brazilian Confederation of Agriculture and Livestock (2011) Plantio de eucalipto no Brasil: Mitos e verdades. CNA, BraziliaGoogle Scholar
  7. Brazilian Reference Center for Solar and Wind Energy (2013) Atlas do Potencial Eólico do Estada da Bahia. CEPEL, Rio de JaneiroGoogle Scholar
  8. Brazilian Electricity Grid Operator. Operação Diária do Operador do Sistema Nacional, ONS, 2015. [Online]. Available: http://www.ons.org.br/publicacao/ipdo/
  9. Brazilian Energy Research Office (2015) Plano Decenal de Expansão de Energia 2024. EPE, Rio de JaneiroGoogle Scholar
  10. Brazilian Ministry of the Environment (2016) National adaptation plan to climate change: sectoral and thematic strategies, volume II. Brazilian Ministry of the Environment, BraziliaGoogle Scholar
  11. Barifouse R (2014) Sudeste pode ‘aprender com Nordeste a lidar com seca’. [Online]. Available: http://www.bbc.com/portuguese/noticias/2014/08/140820_crise_agua_nordeste_sudeste_rb
  12. Chen W, Kuo P, Liu S-H, Wu W (2014) Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy 71:40–48CrossRefGoogle Scholar
  13. Costa J (2012) Desenvolvimento de um sistema de alerta de enchente aplicado aos planos de defesa civil em áreas de risco no Estado do Pará utilizando sistema de informações geográficas (SIG), Caso: Cidade de Marabá. Universidade Federal do Pará, BelémGoogle Scholar
  14. Couto L, Müller M (2008) Florestas Energeticas no Brasil. In: Biomassa para Energia. UNICAMP, São Paulo, pp 93–111Google Scholar
  15. Couto L, Nicholas I, Wright L (2011) Short rotation eucalypt plantations for energy in Brazil. In: IEA Bioenergy, ViçosaGoogle Scholar
  16. Davidson E, De Araüjo A, Artaxo P, Balch J, Brown I, Bustamante M, Coe M, Defries R, Keller M, Longo M, Munger J, Schroeder W, Soares-Filho B, Souza C Jr, Wofsy S (2012) The Amazon basin in transition. Nature 481(7381):321–328Google Scholar
  17. Dias P (2014) Análise Espacial Aplicada à Delimitação de Áreas Úmidas da Planície de Inundação do Médio Araguaia. Universidade Federal do Mato Grosso, CuiabáGoogle Scholar
  18. Henderson-Sellers AGV (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim Chang 6(3):231–257CrossRefGoogle Scholar
  19. Hunt J, Freitas M, Pereira Junior A (2014) Aumentando a Capacidade de Armazenamento Energético do Brasil. In: IX Congresso Brasileiro de Planejamento Energético, 25 a 27 de Agosto, FlorianópolisGoogle Scholar
  20. Hunt J, Guillot V, Freitas M, Solari R (2016) Energy crop storage: an alternative to resolve the problem of unpredictable hydropower generation in Brazil. Energy 101:91–99CrossRefGoogle Scholar
  21. Institute of Hydraulic Research. Hidrologia de Grande Escala, IPH/UFRGS, [Online]. Available: https://www.ufrgs.br/hge/modelos-e-outros-produtos/mgb-iph-propagacao-inercial/. [Accessed 17 07 2016]
  22. Júnior J, Tomasella J, Rodriguez D (2015) Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin. Clim Chang 129(1–2):117–129CrossRefGoogle Scholar
  23. Leal Filho W (2015) Handbook of climate change adaptation. Springer, BerlinCrossRefGoogle Scholar
  24. Lean J, Warrilow D (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342(6248):411–413CrossRefGoogle Scholar
  25. Mamede F, Garcia P, Sousa Júnior W (2002) Análise de Viabilidade Sócio-Econômico-Ambiental da Transposição de Águas da Bacia do Rio Tocantins para o Rio São Francisco na Região do Jalapão/TO. Conservation Strategy Fund, Conservation International do Brasil, Instituto Internacional de Educação do Brasil, BraziliaGoogle Scholar
  26. São Francisco River Transposition Commission (2015) Apresentação do Plano de Integração de Bacias e sobre o estágio em que se encontram os eixos da obra de transposição nos Estados de Minas Gerais, Bahia e Pernambuco. Brazilian Chamber of Deputies, BraziliaGoogle Scholar
  27. Santos M (2006) Estudo Econômico do Rio Araguaia - Região de Aruanã pela demanda turística. Universidade de Goiás, GoiâniaGoogle Scholar
  28. Sartório I (2014) Avaliação e Modelagem do Crescimento de Florestas Energéticas de Eucalipto Plantadas em Diferentes Densidades. Universidade Federal do Paraná, CuritibaGoogle Scholar
  29. Spracklen D, Arnold S, Taylor C (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–285CrossRefGoogle Scholar
  30. Topographic-map. Brazil, Topographic-map.com, [Online]. Available: http://pt-br.topographic-map.com/places/Brasil-3559915/. [Accessed 17 07 2016]
  31. Vasco A (2015) Indicadores de Alteração Hidrológica: O Declínio das Vazões no Baixo Rio São Fracisco. In: Universidade Federal de Sergipe, São CristovãoGoogle Scholar
  32. Windyty. [Online]. Available: https://www.windyty.com. [Accessed 11 July 2016]

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  2. 2.Manchester Metropolitan UniversityManchesterUK
  3. 3.Research and Transfer Centres Sustainable Development and Climate Change ManagrmentHamburg University of Applied SciencesHamburgGermany

Personalised recommendations