Advertisement

Climatic Change

, Volume 143, Issue 3–4, pp 487–501 | Cite as

Potential impact of climate change on the risk of windthrow in eastern Canada’s forests

  • Christian Saad
  • Yan BoulangerEmail author
  • Marilou Beaudet
  • Philippe Gachon
  • Jean-Claude Ruel
  • Sylvie Gauthier
Article

Abstract

Climate change is likely to affect windthrow risks at northern latitudes by potentially changing high wind probabilities and soil frost duration. Here, we evaluated the effect of climate change on windthrow risk in eastern Canada’s balsam fir (Abies balsamea [L.] Mill.) forests using a methodology that accounted for changes in both wind speed and soil frost duration. We used wind speed and soil temperature projections at the regional scale from the CRCM5 regional climate model (RCM) driven by the CanESM2 global climate model (GCM) under two representative concentration pathways (RCP4.5, RCP8.5), for a baseline (1976–2005) and two future periods (2041–2070, 2071–2100). A hybrid mechanistic model (ForestGALES) that considers species resistance to uprooting and wind speed distribution was used to calculate windthrow risk. An increased risk of windthrow (3 to 30%) was predicted for the future mainly due to an increased duration of unfrozen soil conditions (by up to 2 to 3 months by the end of the twenty-first century under RCP8.5). In contrast, wind speed did not vary markedly with a changing climate. Strong regional variations in wind speeds translated into regional differences in windthrow risk, with the easternmost region (Atlantic provinces) having the strongest winds and the highest windthrow risk. Because of the inherent uncertainties associated with climate change projections, especially regarding wind climate, further research is required to assess windthrow risk from the optimum combination of RCM/GCM ensemble simulations.

Notes

Acknowledgements

We thank the Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER) of the Université du Québec à Montréal (UQAM) for providing the outputs of all the simulations and climate databases used in our study, with special thanks to Katja Winger for the information provided regarding CRCM5 and to Guillaume Dueymes for helping with the preparation of NARR and CRCM5 data.

Supplementary material

10584_2017_1995_MOESM1_ESM.pdf (171 kb)
ESM 1 (PDF 170 kb)
10584_2017_1995_MOESM2_ESM.docx (100 kb)
ESM 2 (DOCX 99 kb)
10584_2017_1995_MOESM3_ESM.pdf (461 kb)
ESM 3 (PDF 461 kb)

References

  1. Achim A, Ruel J-C, Gardiner BA, Laflamme G, Meunier S (2005) Modelling the vulnerability of balsam fir forests to wind damage. For Ecol Manag 204:35–50. doi: 10.1016/j.foreco.2004.07.072 CrossRefGoogle Scholar
  2. Arora VK, Scinocca JF, Boer GJ et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys res Lett 38:L05805. doi: 10.1029/2010GL046270 CrossRefGoogle Scholar
  3. Blennow K, Andersson M, Bergh J, Sallnäs O, Olofsson E (2010a) Potential climate change impacts on the probability of wind damage in a south Swedish forest. Clim Chang 99:261–278. doi: 10.1007/s10584-009-9698-8 CrossRefGoogle Scholar
  4. Blennow K, Andersson M, Sallnäs O, Olofsson E (2010b) Climate change and the probability of wind damage in two Swedish forests. For Ecol Manag 259:818–830. doi: 10.1016/j.foreco.2009.07.004 CrossRefGoogle Scholar
  5. Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Chang 87:347–360. doi: 10.1007/s10584-007-9290-z CrossRefGoogle Scholar
  6. Bouchard M, Pothier D, Ruel J-C (2008) Stand-replacing windthrow in the boreal forest of eastern Quebec. Can J For Res 39:481–487CrossRefGoogle Scholar
  7. Boudoux M (1978) Tables de rendement empiriques pour l'épinette noire, le sapin baumier et le pin gris au Québec. Min. Terres et Forêts, QuébecGoogle Scholar
  8. Cheng CS, Lopes E, Fu C, Huang Z (2014) Possible impacts of climate change on wind gusts under downscaled future climate conditions: updated for Canada. J Clim 27:1255–1270. doi: 10.1175/JCLI-D-13-00020.1 CrossRefGoogle Scholar
  9. Cimon-Morin J, Ruel J-C, Darveau M (2010) Short term effects of alternative silvicultural treatments on stand attributes in irregular balsam fir-black spruce stands. For Ecol Manag 260:907–914. doi: 10.1016/j.foreco.2010.06.010 CrossRefGoogle Scholar
  10. Colle BA, Booth JF, Chang EKM (2015) A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr Clim Change Rep 1:125–143. doi: 10.1007/s40641-015-0013-7 CrossRefGoogle Scholar
  11. Eum H-I, Gachon P, Laprise R (2014) Developing a likely climate scenario from multiple regional climate model simulations with an optimal weighting factor. Clim Dyn 43:11–35. doi: 10.1007/s00382-013-2021-4 CrossRefGoogle Scholar
  12. Forestry Commission (2015) ForestGALES-A wind risk decision support tool for forest management in Britain: user manual, version 2.5. Forestry Commission, EdinburghGoogle Scholar
  13. Frank RM (1990) Abies balsamea (L.) Mill. - balsam fir. In: Burns RM, Honkala BH (eds) Silvics of North America, Vol. 1: conifers. USDA For Serv, Washington, DCGoogle Scholar
  14. Gachon P, Laprise R, Zwack P, Saucier FJ (2003) The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay. Tellus a 55(1):61–87CrossRefGoogle Scholar
  15. Gardiner B, Peltola H, Kellomaki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model 129:1–23CrossRefGoogle Scholar
  16. Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll BE (2013) Living with storm damage to forests: what science can tell us. European Forest Institute, JoensuuGoogle Scholar
  17. Gastineau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys res Lett 36:L10810. doi: 10.1029/2009GL037500 CrossRefGoogle Scholar
  18. Girard F, De Grandpré L, Ruel J-C (2014) Partial windthrow as a driving process of forest dynamics in old-growth boreal forests. Can J For Res 44:1165–1176. doi: 10.1139/cjfr-2013-0224 CrossRefGoogle Scholar
  19. Gregow H, Peltola H, Laapas M, Saku S, Venäläinen A (2011) Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fenn 45:35–54. doi: 10.14214/sf.30 CrossRefGoogle Scholar
  20. Guo D (2008) Zonation with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int J Geogr Inf Sci 22:801–823. doi: 10.1080/13658810701674970 CrossRefGoogle Scholar
  21. Guo D (2011) REDCAP: a zonation toolkit (version 2.0.0)—user manual. Department of Geography, University of South Carolina, ColumbiaGoogle Scholar
  22. Hanson C, Goodess CM (2004) Predicting future changes in wind. In: BETWIXT: built EnvironmenT-weather scenarios for investigation of impacts and eXTremes. University of East Anglia, Clim Res Unit, Norwich, UKGoogle Scholar
  23. Heinonen T, Pukkala T, Ikonen VP, Peltola H, Venäläinen A, Dupont S (2009) Integrating the risk of wind damage into forest planning. For Ecol Manag 258:1567–1577. doi: 10.1016/j.foreco.2009.07.006 CrossRefGoogle Scholar
  24. Helama S, Tuomenvirta H, Venäläinen A (2011) Boreal and subarctic soils under climatic change. Glob Planet Change 79:37–47. doi: 10.1016/j.gloplacha.2011.08.001 CrossRefGoogle Scholar
  25. Henry HAL (2013) Soil freezing dynamics in a changing climate: implications for agriculture. In: Imai Y, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 17–27CrossRefGoogle Scholar
  26. Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2013) Climate simulation over the CORDEX-Africa domain using the fifth generation Canadian regional climate model (CRCM5). Clim Dyn 40(5–6):1415–1433. doi: 10.1007/s00382-012-1387-z CrossRefGoogle Scholar
  27. Hundecha Y, St-Hilaire A, Ouarda T, El Adlouni S, Gachon P (2008) A non-stationary extreme value analysis for the assessment of changes in extreme wind speed over the Gulf of St.Lawrence, Canada. J Appl Meteorol Climatol 47(11):2745–2759. doi: 10.1175/2008JAMC1665.1 CrossRefGoogle Scholar
  28. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, NY, USA 582 ppGoogle Scholar
  29. Jungqvist G, Oni SK, Teutschbein C, Futter MN (2014) Effect of climate change on soil temperature in Swedish boreal forests. PLoS One 9:e93957. doi: 10.1371/journal.pone.0093957 CrossRefGoogle Scholar
  30. Kamimura K, Kitagawa K, Saito S, Mizunaga H (2012) Root anchorage of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.) under the combined loading of wind and rapidly supplied water on soil: analyses based on tree-pulling experiments. Eur J for res 131:219–227CrossRefGoogle Scholar
  31. Kellomäki S, Maajärvi M, Strandman H, Kilpeläinen A, Peltola H (2010) Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fenn 44:213–233CrossRefGoogle Scholar
  32. Laprise R, Hernández-Diaz L, Tete K et al (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41:3219–3246. doi: 10.1007/s00382-012-1651-2 CrossRefGoogle Scholar
  33. Long Z, Perrie W, Gyakum J, Laprise R, Caya D (2009) Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. J Geophys res 114:D12111. doi: 10.1029/2008JD010869 CrossRefGoogle Scholar
  34. Martynov A, Laprise R, Sushama L, Winger K, Šeparovic L, Dugas B (2013) Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian regional climate model, version 5: model performance evaluation. Clim Dyn 41(11–12):2973–3005. doi: 10.1007/s00382-013-1778-9 CrossRefGoogle Scholar
  35. McInnes KL, Erwin TA, Bathols JM (2011) Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci let 12:325–333. doi: 10.1002/asl.341 CrossRefGoogle Scholar
  36. Mesinger F, DiMego G, Kalnay E et al (2006) North American regional reanalysis. Bull am Meteorol Soc 87:343–360. doi: 10.1175/BAMS-87-3-343 CrossRefGoogle Scholar
  37. Mitchell SJ (2013) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86:147–157. doi: 10.1093/forestry/cps058 CrossRefGoogle Scholar
  38. Mitchell SJ, Ruel J-C (2015) Modeling windthrow at stand and landscape scales. In: Perera AH, Sturtevant BR, Buse LJ (eds) Simulation modeling of forest landscape disturbances. Springer International Publishing, Cham, pp 17–43. doi: 10.1007/978-3-319-19809-5 CrossRefGoogle Scholar
  39. Moore JR, Watt MS (2015) Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests. Glob Change Biol 21:3021–3035. doi: 10.1111/gcb.12900 CrossRefGoogle Scholar
  40. Peltola H, Kellomäki S, Väisänen H (1999) Model computations of the impact of climatic change on the windthrow risk of trees. Clim Chang 41:17–36. doi: 10.1023/A:1005399822319 CrossRefGoogle Scholar
  41. Plante M, Son S-W, Atallah EH, Gyakum J, Grise K (2015) Extratropical cyclone climatology across eastern Canada. Int J Climatol 35:2759–2776. doi: 10.1002/joc.4170 CrossRefGoogle Scholar
  42. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in central Europe have accelerated since 1870. Nat Commun 5:4967. doi: 10.1038/ncomms5967 CrossRefGoogle Scholar
  43. Price DT, Alfaro RI, Brown KJ et al (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365. doi: 10.1139/er-2013-0042 CrossRefGoogle Scholar
  44. R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  45. Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. doi: 10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  46. Ruel J-C (1989) Mortalité du bois laissé sur pied à la suite d'une coupe par bandes dans trois régions du Québec. For Chron 65:107–113. doi: 10.5558/tfc65107-2 CrossRefGoogle Scholar
  47. Ruel J-C (2000) Factors influencing windthrow in balsam fir forests: from landscape studies to individual tree studies. For Ecol Manag 135:169–178. doi: 10.1016/S0378-1127(00)00308-X CrossRefGoogle Scholar
  48. Ruel J-C, Quine CP, Meunier S, Suarez J (2000) Estimating windthrow risk in balsam fir stands with the ForestGales model. For Chron 76:329–337. doi: 10.5558/tcf76329-2 CrossRefGoogle Scholar
  49. Segal MR, Xiao Y (2011) Multivariate random forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1:80–87Google Scholar
  50. Šeparovic L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41(11–12):3167–3201. doi: 10.1007/s00382-013-1737-5 CrossRefGoogle Scholar
  51. Smith RL (1985) Maximum likelihood estimation in a class of nonregular cases. Biometrika 72:67–92. doi: 10.2307/2336336 CrossRefGoogle Scholar
  52. Strong WL, LaRoi GH (1983) Root-system morphology of common boreal forest trees in Alberta. Canada Can J For Res 13:1164–1173CrossRefGoogle Scholar
  53. Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. doi: 10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  54. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1):5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  55. Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 17:63–72. doi: 10.3354/cr017063 CrossRefGoogle Scholar
  56. Verseghy D (2011) CLASS–The Canadian Land Surface Scheme (version 3.5) - Technical documentation (version 1). Environment Canada, Dorval, QC, CanadaGoogle Scholar
  57. Waldron K, Ruel J-C, Gauthier S (2013) The effects of site characteristics on the landscape-level windthrow regime in the North shore region of Quebec, Canada. Forestry 86:159–171. doi: 10.1093/forestry/cps061 CrossRefGoogle Scholar
  58. Wan H, Wang XL, Swail VR (2010) Homogenization and trend analysis of Canadian near-surface wind speeds. J Clim 23:1209–1225. doi: 10.1175/2009JCLI3200.1 CrossRefGoogle Scholar
  59. Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi: 10.1029/2004RG000157 Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2017

Authors and Affiliations

  1. 1.Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)Université du Québec à MontréalMontréalCanada
  2. 2.Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuébecCanada
  3. 3.Département des sciences du bois et de la forêtUniversité LavalQuébecCanada

Personalised recommendations