Climatic Change

, Volume 142, Issue 1–2, pp 67–81 | Cite as

Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae)

  • Paula S. M. Celis-Plá
  • Brezo Martínez
  • Nathalie Korbee
  • Jason M. Hall-Spencer
  • Félix L. Figueroa
Article

Abstract

Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC50), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.

Keywords

Climate change Cystoseira tamariscifolia Ocean acidification Temperature Biomass Photosynthesis Phenolic compounds 

Supplementary material

10584_2017_1943_MOESM1_ESM.docx (13 kb)
Table S1(DOCX 13 kb)
10584_2017_1943_MOESM2_ESM.docx (12 kb)
Table S2(DOCX 11 kb)
10584_2017_1943_MOESM3_ESM.docx (15 kb)
Table S3(DOCX 15 kb)
10584_2017_1943_MOESM4_ESM.docx (14 kb)
Table S4(DOCX 14 kb)
10584_2017_1943_MOESM5_ESM.docx (13 kb)
Table S5(DOCX 12 kb)

References

  1. Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodríguez E, Conde-Álvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465CrossRefGoogle Scholar
  2. Arnold TM, Targett NM (2002) Marine tannins: the importance of a mechanistic framework for predicting ecological roles. J Chem Ecol 28(10):1919–1934CrossRefGoogle Scholar
  3. Arnold T, Mealey LH, Miller AW, Hall-Spencer JM, Milazzo M, Maers K (2012) Ocean acidification and the loss of phenolic substances in marine plants. PLoS One 7(4):e35107CrossRefGoogle Scholar
  4. Baggini C, Salomidi M, Voutsinas E, Bray L, Krasakopoulou E, Hall-Spencer JM (2014) Seasonality affects macroalgal community response to increases in pCO2. PLoS One 9(9):e106520CrossRefGoogle Scholar
  5. Bender D, Diaz-Pulido G, Dove S (2014) The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J Phycol 50:203–215CrossRefGoogle Scholar
  6. Betancor S, Tuya F, Gil-Díaz T, Figueroa FL, Hoaroun R (2014) Effects of a submarine eruption on the performance of two brown seaweeds. J Sea Res 87:68–78CrossRefGoogle Scholar
  7. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200CrossRefGoogle Scholar
  8. Brodie J, Williamson C, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M, Yesson C, Anderson KM, Asnaghi V, Brownlee C, Burdett HL, Burrows MT, Collins S, Donohue PCJ, Harvey B, Foggo A, Noisette F, Nunes J, Ragazzola F, Raven JA, Schmidt DN, Suggett D, Teichberg M, Hall-Spencer JM (2014) The future of the Northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4(13):2787–2798CrossRefGoogle Scholar
  9. Celis-Plá PSM, Hall-Spencer JM, Horta PA, Milazzo M, Korbee N, Cornwall CE, Figueroa FL (2015) Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci 2:26CrossRefGoogle Scholar
  10. Celis-Plá PSM, Bouzon ZL, Hall-Spencer JM, Schmidt EC, Korbee N, Figueroa FL (2016) Seasonal changes in photoprotectors and antioxidant capacity of the fucoid macroalga Cystoseira tamariscifolia. Mar Environ Res 115:89–97CrossRefGoogle Scholar
  11. Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F (2010) The biodiversity of the Mediterranean Sea: estimates, Pattterns, and Theats. PLoS One 5(8):e11821371CrossRefGoogle Scholar
  12. Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc B 277:1409–1415CrossRefGoogle Scholar
  13. Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd C (2012) Carbon-use strategies in macroalgae: differential responses to lowered ph and implications for ocean acidification. J Phycol 48:137–144CrossRefGoogle Scholar
  14. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215CrossRefGoogle Scholar
  15. Figueroa FL, Gómez I (2001) Photoacclimation to solar UV radiation in red macroalgae. J Appl Phycol 13:235–248CrossRefGoogle Scholar
  16. Figueroa FL, Korbee N (2010) Interactive effects of UV radiation and nutrients on ecophysiology: vulnerability and adaptation to climate change. In: Israel A, Einvav R, Seckbach J (eds) Seaweeds and their role in globally changing environments. Springer-Verlag, Berlin Heidelberg, pp 157–182CrossRefGoogle Scholar
  17. Figueroa FL, Domínguez-González B, Korbee N (2014) Vulnerability and acclimation to increased UVB in the three intertidal macroalgae of different morpho-functional groups. Mar Environ Res 101:8–21CrossRefGoogle Scholar
  18. Gómez-Garreta A, Barceló-Marti M, Gallardo T, Pérez-Ruzafa IM, Ribera MA, Rull J (2001) Flora Phycologica Ibérica. Fucales. Vol. 1. Universidad de Murcia, EspañaGoogle Scholar
  19. Grzymski J, Johnsen G, Sakshug E (1997) The signiwcance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J Phycol 33:408–414CrossRefGoogle Scholar
  20. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  21. Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light of marine macrophytes. In: Wienke C, Bischof K (eds) Seaweed biology ecological studies. Springer-Verlag, Berlin Heidelberg, pp 3–23CrossRefGoogle Scholar
  22. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078CrossRefGoogle Scholar
  23. Hofmann LC, Bischof K, Baggini C, Johnson A, Koop-Jakobsen K, Teichberg M (2015) CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia 177:1157–1169CrossRefGoogle Scholar
  24. Høiskar BAK, Haugen R, Danielsen T, Kylling A, Edvardsen K, Dahlback A, Johnsen B, Blumthaler M, Schreder J (2003) Multichannel moderate-bandwidth filter instrument for measurement the ozone-column amount, cloud transmittance, and ultraviolet dose rates. Appl Opt 42:18–20CrossRefGoogle Scholar
  25. IPCC (2014) The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol 18:2792–2803CrossRefGoogle Scholar
  27. Ju-Hyoung K, Kang EJ, Edwards MS, Lee K, Jeong HJ, Kim KY (2016) Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31(3):243–256CrossRefGoogle Scholar
  28. Koroleff F (1983) Determination of phosphorus. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis: second, revised and extended edition. Weinheim, Verlag Chemie, pp 125–139Google Scholar
  29. Linares C, Vidal M, Canals M, Kersting DK, Amblas D, Aspillaga E, Cebrián E, Delgado-Huertas A, Díaz D, Garrabou J, Hereu B, Navarro L, Teixidó N, Ballesteros E (2015) Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc R Soc B 282:20150587CrossRefGoogle Scholar
  30. Martin S, Gattuso P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100CrossRefGoogle Scholar
  31. Martínez B, Arenas F, Trilla A, Viejo RM, Carreño F (2015) Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob Change Biol 21(4):1422–1433CrossRefGoogle Scholar
  32. Mercado JM, Cortés D, García A, Ramírez T (2007) Seasonal and inter-annual changes in the planktonic communities of the northwest Alboran Sea (Mediterranean Sea). Prog Oceanogr 74:273–293CrossRefGoogle Scholar
  33. Mercado J, Cortés D, Ramírez T, Gómez F (2012) Decadal weakening of the wind-induced upwelling reduces the impact of nutrient pollution in the bay of Málaga (western Mediterranean Sea). Hydrobiologia 680:91–107CrossRefGoogle Scholar
  34. Newcomb LA, Milazzo M, Hall-Spencer JM, Carrington E (2015) Ocean acidification bends the mermaid’s wineglass. Biol Lett 11:20141075CrossRefGoogle Scholar
  35. Organization for Economic Cooperation and Development (1982) Eutrophisation des euax. Métodes de surveillance, d’evaluation et de lutte. ParisGoogle Scholar
  36. Pérez-lloréns JL, Vergara JJ, Olivé I, Mercado JM, Conde-Álvarez R (2014) Autochthonous seagrasses. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer Netherlands, Dordrecht, pp 137–158CrossRefGoogle Scholar
  37. Pérez-Rodríguez E (2000) Bióptica de aguas oceánicas y costeras. Fotosíntesis, fotoinhibición y fotoprotección en algas a la radiación solar. Doctoral Thesis. Málaga UniversityGoogle Scholar
  38. Ramírez T, Cortés D, Mercado JM, Vargas-Yáñez M, Sebastián M, Liger E (2005) Seasonal dynamics of inorganic nutrients and phytoplankton biomass in the NW Alboran Sea. Estuar Coast Shelf S 65:654–670CrossRefGoogle Scholar
  39. Raven JA, Hurd CJ (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125CrossRefGoogle Scholar
  40. Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob Change Biol 18:854–864CrossRefGoogle Scholar
  41. Russell BD, Pasasrelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol 47:744–752CrossRefGoogle Scholar
  42. Schoenwaelder MEA (2008) The biology of phenolic containing vesicles. Algae 23:163–175CrossRefGoogle Scholar
  43. Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882CrossRefGoogle Scholar
  44. Stengel D, Conde-Álvarez R, Connan S, Nitschke U, Arenas F, Abreu H, Bonomi Barufi J, Chow F, Robledo D, Malta EJ, Mata M, Konotchick T, Nassar C, Pérez-Ruzafa A, López D, Marquardt R, Vaz-Pinto F, Celis-Plá PSM, Hermoso M, Ruiz E, Ordoñez G, Flores P, Zanolla M, Bañares-España E, Altamirano M, Korbee N, Bischof K, Figueroa FL (2014) Short-term effects of CO2, nutrient and temperature impacts on three marine macroalgae under solar radiation. Aquat Biol 22:159–176CrossRefGoogle Scholar
  45. Strain EMA, Thomson RJ, Micheli F, Mancuso FP, Airoldi L (2014) Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat- forming algae in marine ecosystems. Glob Change Biol 20(11):3300–3312CrossRefGoogle Scholar
  46. Swanson AK, Fox CH (2007) Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Glob Change Biol 13:1696–1709CrossRefGoogle Scholar
  47. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge, New York, 509 ppGoogle Scholar
  48. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172CrossRefGoogle Scholar
  49. Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48(6):510–517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Paula S. M. Celis-Plá
    • 1
    • 2
  • Brezo Martínez
    • 3
  • Nathalie Korbee
    • 2
  • Jason M. Hall-Spencer
    • 4
    • 5
  • Félix L. Figueroa
    • 2
  1. 1.Laboratory of Coastal Environmental Research, Centre of Advanced StudiesUniversity of Playa AnchaViña del MarChile
  2. 2.Department of Ecology, Faculty of SciencesUniversity of MalagaMalagaSpain
  3. 3.Biodiversity and Conservation UnitRey Juan Carlos UniversityMostolesSpain
  4. 4.Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
  5. 5.Shimoda Marine Research CentreTsukuba UniversityTsukubaJapan

Personalised recommendations