Climatic Change

, Volume 141, Issue 3, pp 451–465 | Cite as

Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change

  • Vimal Mishra
  • Rohini Kumar
  • Harsh L. Shah
  • Luis Samaniego
  • S. Eisner
  • Tao Yang


Partitioning of precipitation (P) into actual evapotranspiration (ET) and runoff affects a proxy for water availability (P-ET) on land surface. ET accounts for more than 60% of global precipitation and affects both water and energy cycles. We study the changes in precipitation, air temperature, ET, and P-ET in seven large basins under the RCP 2.6 and 8.5 scenarios for the projected future climate. While a majority of studied basins is projected to experience a warmer and wetter climate, uncertainty in precipitation projections remains large in comparison to the temperature projections. Due to high uncertainty in ET, uncertainties in fraction of precipitation that is evaporated (ET/P) and a proxy for available water (P-ET) are also large under the projected future climate. Our assessment showed that under the RCP 8.5 scenario, global climate models are major contributors to uncertainties in ET (P-ET) simulations in the four (six) basins, while uncertainty due to hydrological models is prevailing or comparable in the other three (one) basins. The simulated ET is projected to increase under the warmer and wetter future climates in all the basins and periods under both RCPs. Regarding P-ET, it is projected to increase in five out of seven basins in the End term (2071–2099) under the RCP 8.5 scenario. Precipitation elasticity and temperature sensitivity estimated for ET were found to be positive in all the basins under the RCP 8.5 scenario. In contrast, the temperature sensitivity estimated for (P-ET) was found to be negative for all the basins under the RCP 8.5 scenario, indicating the role of increased energy availability and limited soil moisture. Our results highlight the need for improvements in climate and hydrological models with better representation of soil, vegetation, and cold season processes to reduce uncertainties in the projected ET and P-ET.


Hydrological Model Multimodel Ensemble Projected Future Climate Ganges Basin Precipitation Projection 

Supplementary material

10584_2016_1886_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1047 kb)


  1. Abtew DW, Melesse PDA (2013) Climate Change and Evapotranspiration. In: Evaporation and Evapotranspiration. Springer Netherlands, pp 197–202Google Scholar
  2. Anderson MJ, Legendre P (1999) An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul 62:271–303CrossRefGoogle Scholar
  3. Armstrong RA et al (2000) An introduction to analysis of variance (ANOVA) with special reference to data from clinical experiments in optometry. Ophthalmic Physiol Opt 20:235–241CrossRefGoogle Scholar
  4. Barnett TP et al (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309CrossRefGoogle Scholar
  5. Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702. doi: 10.1029/2007GL032417 CrossRefGoogle Scholar
  6. Douville H, Ribes A, Decharme B et al (2013) Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat Clim Change 3:59–62CrossRefGoogle Scholar
  7. Gerten D et al (2008) Causes of change in 20th century global river discharge. Geophys Res Lett 35:L20405. doi: 10.1029/2008GL035258 CrossRefGoogle Scholar
  8. Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134:371–385CrossRefGoogle Scholar
  9. Haddeland I, Clark DB, Franssen W et al (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeorol 12:869–884CrossRefGoogle Scholar
  10. Hagemann S, Chen C, Clark D et al (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dyn 4:129–144CrossRefGoogle Scholar
  11. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108:225–230Google Scholar
  12. Hempel S, Frieler K, Warszawski L et al (2013) A trend-preserving bias correction–the ISI-MIP approach. Earth Syst Dyn 4:219–236CrossRefGoogle Scholar
  13. Hobbins M et al (2012) What drives the variability of evaporative demand across the conterminous United States? J Hydrometeorol 13:1195–1214CrossRefGoogle Scholar
  14. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  15. Immerzeel WW et al (2010) Climate Change Will Affect the Asian Water Towers. Science 328:1382–1385. doi: 10.1126/science.1183188 CrossRefGoogle Scholar
  16. Jung M, Reichstein M, Ciais P et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954. doi: 10.1038/nature09396 CrossRefGoogle Scholar
  17. Krysanova V and Hattermann F (2016) Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results, Climatic Change (this Special Issue)Google Scholar
  18. Kumar R et al (2013) Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour Res 49:360–379CrossRefGoogle Scholar
  19. Kundzewicz ZW, Stakhiv EZ (2010) Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol Sci J –J Sci Hydrol 55:1085–1089CrossRefGoogle Scholar
  20. McVicar TR, Roderick ML, Donohue RJ et al (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205CrossRefGoogle Scholar
  21. Mishra V, Lilhare R (2016) Hydrologic sensitivity of Indian sub-continental river basins to climate change. Glob Planet Change 139:78–96CrossRefGoogle Scholar
  22. Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41:128–134CrossRefGoogle Scholar
  23. Mueller B, Seneviratne SI, Jimenez C et al (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38:L06402. doi: 10.1029/2010GL046230 Google Scholar
  24. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072CrossRefGoogle Scholar
  25. Pechlivanidis I et al (2016) Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions. Clim Change. doi: 10.1007/s10584-016-1723-0 Google Scholar
  26. Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51CrossRefGoogle Scholar
  27. Prudhomme C, Giuntoli I, Robinson EL et al (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci 111:3262–3267CrossRefGoogle Scholar
  28. Samaniego L et al (2013) Implications of parameter uncertainty on soil moisture drought analysis in Germany. J Hydrometeorol 14:47–68CrossRefGoogle Scholar
  29. Samaniego L et al (2016) Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Clim Change. doi: 10.1007/s10584-016-1778-y Google Scholar
  30. Schewe J, Heinke J, Gerten D et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250CrossRefGoogle Scholar
  31. Shah HL, Mishra V (2016) Hydrologic Changes in Indian Sub-Continental River Basins (1901-2012). J. Hydrometeor. doi: 10.1175/JHM-D-15-0231.1, in press
  32. Tang Q, Lettenmaier DP (2012) 21st century runoff sensitivities of major global river basins. Geophys Res Lett 39:L06403. doi: 10.1029/2011GL050834 CrossRefGoogle Scholar
  33. Teuling AJ et al (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:L02404. doi: 10.1029/2008GL036584 CrossRefGoogle Scholar
  34. Ukkola AM, Prentice IC (2013) A worldwide analysis of trends in water-balance evapotranspiration. Hydrol Earth Syst Sci 17:4177–4187CrossRefGoogle Scholar
  35. Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  36. Vano JA, Das T, Lettenmaier DP (2012) Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J Hydrometeorol 13:932–949CrossRefGoogle Scholar
  37. Vetter T et al (2015) Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst Dyn 6:17. doi:10.5194/esdd-5-849-2014Google Scholar
  38. Vetter T et al (2016) Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim Change. doi: 10.1007/s10584-016-1794-y Google Scholar
  39. Viste E, Sorteberg A (2015) Snowfall in the Himalayas: an uncertain future from a little-known past. Cryosphere Discuss 9:441–493. doi: 10.5194/tcd-9-441-2015 CrossRefGoogle Scholar
  40. Wang K et al (2010) Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J Geophys Res Atmospheres 115:D20112. doi: 10.1029/2009JD013671 CrossRefGoogle Scholar
  41. Warszawski L et al (2014) The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc Natl Acad Sci 111:3228–3232CrossRefGoogle Scholar
  42. Weedon GP et al (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848CrossRefGoogle Scholar
  43. Yip S et al (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Climate 24:4634–4643CrossRefGoogle Scholar
  44. Zeng Z et al (2014) A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J Geophys Res Atmospheres 119:1186–1202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Vimal Mishra
    • 1
  • Rohini Kumar
    • 2
  • Harsh L. Shah
    • 1
  • Luis Samaniego
    • 2
  • S. Eisner
    • 3
  • Tao Yang
    • 4
  1. 1.Civil Engineering, Indian Institute of Technology (IIT) GandhinagarGujaratIndia
  2. 2.UFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Center for Environmental Systems Research (CESR)KasselGermany
  4. 4.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Center for Global Change and Water CycleHohai UniversityNanjingChina

Personalised recommendations