Climatic Change

, Volume 141, Issue 2, pp 273–286 | Cite as

Accuracy versus variability of climate projections for flood assessment in central Italy

Article

Abstract

Climatic extremes are changing and decision-makers express a strong need for reliable information on future changes over the coming decades as a basis for adaption strategies. In the hydrological-hydraulic context, to estimate changes on floods, a modeling chain composed by general circulation models (GCMs), bias correction (BC) methods, and hydrological modeling is generally applied. It is well-known that each step of the modeling chain introduces uncertainties, resulting in a reduction of the reliability of future climate projections. The main goal of this study is the assessment of the accuracy and variability (i.e., model accuracy, climate intermodel variability, and natural variability) on climate projections related to the present period. By using six different GCMs and two BC methods, the “climate intermodel variability” is evaluated. “Natural variability” is estimated through random realizations of stochastic weather generators. By comparing observed and simulated extreme discharge values, obtained through a continuous rainfall-runoff model, “model accuracy” is computed. The Tiber River basin in central Italy is used as a case study. Results show that in climate projections, model accuracy and climate intermodel variability components have to be clearly distinguished. For accuracy, the hydrological model is found to be the largest source of error; for variability, natural variability contributes for more than 75% to the total variability while GCM and BC have a much lower influence. Moreover, accuracy and variability components vary significantly, and not consistently, between catchments with different permeability characteristics.

Supplementary material

10584_2016_1876_MOESM1_ESM.pdf (960 kb)
ESM 1(PDF 959 kb)

References

  1. Aich V, Liersch S, Vetter T, Huang S, Tecklenburg J, Hoffmann P, Koch H, Fournet S, Krysanova V, Müller EN, Hattermann FF (2014) Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth Syst Sci 18:1305–1321. doi:10.5194/hess-18-1305-2014 CrossRefGoogle Scholar
  2. Aich V, Liersch S, Vetter T, Fournet S, Andersson JC, Calmanti S, van Weert FHA, Hattermann FF, Paton EN (2016) Flood projections within the Niger River Basin under future land use and climate change. Sci Total Environ 562:666–677CrossRefGoogle Scholar
  3. Andrés-Doménech I, García-Bartual R, Montanari A, Marco JB (2015) Climate and hydrological variability: the catchment filtering role. Hydrol Earth Syst Sci Discuss 11:10411–10430. doi:10.5194/hessd-11-10411-2014 CrossRefGoogle Scholar
  4. Bell VA, Kay AL, Cole SJ, Jones RG, Moore RJ, Reynard NS (2012) How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. J Hydrol 442:89–104CrossRefGoogle Scholar
  5. Blöschl G, Montanari A (2010) Climate change impacts—throwing the dice? Hydrol Process 24:374–381. doi:10.1002/hyp.7574 Google Scholar
  6. Blöschl G, Ardoin-Bardin S, Bonell M, Dorninger M, Goodrich D, Gutknecht D, Matamoros D, Merz B, Shand P, Szolgay J (2007) At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol Process 21:1241–1247CrossRefGoogle Scholar
  7. Böhm R (2008) Heiße Luft: Reizwort Klimawandel—Fakten, A¨ngste, Gesch¨afte (Hot air: the climate change controversy—facts—fears— funding. Edition Va Bene, Klosterneuburg, Wien, 261 ppGoogle Scholar
  8. Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303:176–198CrossRefGoogle Scholar
  9. Brocca L, Melone F, Moramarco T, Singh VP (2009) Assimilation of observed soil moisture data in storm rainfall-runoff modeling. J Hydrol Eng 14(2):153–165CrossRefGoogle Scholar
  10. Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrol Process 25(18):2801–2813. doi:10.1002/hyp.8042 CrossRefGoogle Scholar
  11. Camici S, Brocca L, Melone F, Moramarco T (2014) Impact of climate change on flood frequency using different climate models and downscaling approaches. J Hydrol Eng 19(8):04014002. doi:10.1061/(ASCE)HE.1943-5584.0000959 CrossRefGoogle Scholar
  12. Charlton MB, Arnell NW (2014) Assessing the impacts of climate change on river flows in England using the UKCP09 climate change projections. J Hydrol 519:1723–1738CrossRefGoogle Scholar
  13. Chien H, Yeh PJF, Knouft JH (2013) Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J Hydrol 491:73–88CrossRefGoogle Scholar
  14. Chiew FHS (2006) Estimation of rainfall elasticity of streamflow in Australia. Hydrol Sci J 51(4):613–625. doi:10.1623/hysj.51.4.613 CrossRefGoogle Scholar
  15. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology, chap. 5.2. McGraw-Hill, New YorkGoogle Scholar
  16. Cowpertwait PSP, O’Connell PEO, Metcalfe AV, Mawdsley JA (1996) Stochastic point process modelling of rainfall, I. Single-site fitting validation. J Hydrol 175:17–46Google Scholar
  17. Cullen AC, Frey HC (1999) Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Plenum Press, New York, NYGoogle Scholar
  18. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Climate Change 2:775–779. doi:10.1038/nclimate1562 CrossRefGoogle Scholar
  19. Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267. doi:10.1175/JCLI-D-12-00150.1 CrossRefGoogle Scholar
  20. Fatichi S, Ivanov VY, Caporali E (2011) Simulation of future climate scenarios with a weather generator. Adv Water Resour 34(4):448–467. doi:10.1016/j.advwatres.2010.12.013 CrossRefGoogle Scholar
  21. Fatichi S, Ivanov VY, Caporali E (2013) Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series. Clim Dyn. doi:10.1007/s00382-012-1627-2, 3748, 3749Google Scholar
  22. Fatichi S, Rimkus S, Burlando P, Bordoy R (2014) Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies. Sci Total Environ 493:1171–1182. doi:10.1016/j.scitotenv.2013.12.014 CrossRefGoogle Scholar
  23. Ferson S, Ginzburg LR (1996) Different methods are needed to propagate ignorance and variability. Reliab Eng Syst Saf 54:133–144CrossRefGoogle Scholar
  24. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method. J Clim 15(10):1141–1158Google Scholar
  25. Hawking E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  26. Hawking E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi:10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  27. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Dutra E, Ekman AML, Christensenm JH, van den Hurk B, Jimenez P, Jones C, Kallberg P, Koenigk T, MacGrath R, Miranda P, van Noije T, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willèn U (2010) EC-Earth: a seamless earth system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363CrossRefGoogle Scholar
  28. Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712CrossRefGoogle Scholar
  29. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 582 ppGoogle Scholar
  30. Katz R (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20:167–185CrossRefGoogle Scholar
  31. Kay AL, Jones RG (2012) Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency. Clim Chang 114(2):211–230CrossRefGoogle Scholar
  32. Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Chang 92:41–63. doi:10.1007/s10584-008-9471-4 CrossRefGoogle Scholar
  33. Kay AL, Crooks SM, Davies HN, Prudhomme C, Reynard NS (2014) Probabilistic impacts of climate change on flood frequency using response surfaces I: England and Wales. Reg Environ Chang 14(3):1215–1227CrossRefGoogle Scholar
  34. Knutti R (2008) Should we believe model predictions of future climate change? Phil Trans R Soc A 366:4647–4664. doi:10.1098/rsta.2008.0169 CrossRefGoogle Scholar
  35. Knutti R, Sedláˇcek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373. doi:10.1038/nclimate1716 CrossRefGoogle Scholar
  36. Koutsoyiannis D, Efstratiadis A, Mamassis N, Christofides A (2008) On the credibility of climate predictions. Hydrol Sci J 53(4):671–684Google Scholar
  37. Lehmann J, Rillig M (2014) Distinguishing variability from uncertainty. Nat Climate Change 4:153. doi:10.1038/nclimate2133 CrossRefGoogle Scholar
  38. Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38(8):L08703. doi:10.1029/2011GL046864 CrossRefGoogle Scholar
  39. McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237–3260. doi:10.1007/s00382-014-2418-8 CrossRefGoogle Scholar
  40. Minville M, Brissette F, Leconte R (2008) Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J Hydrol 358:70–83CrossRefGoogle Scholar
  41. Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation and simulation. Water Resour Res 33:1035–1044Google Scholar
  42. Montanari A (2007) What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process 21:841–845CrossRefGoogle Scholar
  43. Mujumdar PP, Ghosh S (2008) Modeling GCM and scenario uncertainty using a possibilistic approach: application to the Mahanadi River, India. Water Resour Res 44:W06407. doi:10.1029/2007WR006137 CrossRefGoogle Scholar
  44. Peleg N, Shamir E, Georgakakos KP, Morin E (2015) A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: a case study of two medium-sized eastern Mediterranean catchments, Israel. Hydrol Earth Syst Sci 19:567–581. doi:10.5194/hess-19-567-2015 CrossRefGoogle Scholar
  45. Prudhomme C, Davies H (2009a) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Clim Chang 93:177–195. doi:10.1007/s10584-008-9464-3 CrossRefGoogle Scholar
  46. Prudhomme C, Davies H (2009b) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Clim Chang 93:197–222. doi:10.1007/s10584-008-9461-6 CrossRefGoogle Scholar
  47. Prudhomme C, Kay AL, Crooks S, Reynard N (2013) Climate change and river flooding: Part 2 sensitivity characterization for British catchments and example vulnerability assessments. Clim Chang 119(3–4):949–964CrossRefGoogle Scholar
  48. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404CrossRefGoogle Scholar
  49. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384CrossRefGoogle Scholar
  50. Seiller G, Anctil F (2014) Climate change impacts on the hydrologic regime of a Canadian river: comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrol Earth Syst Sci 18:2033–2047. doi:10.5194/hess-18-2033-2014 CrossRefGoogle Scholar
  51. Sriwongsitanon N, Taesombat W (2011) Effects of land cover on runoff coefficient. J Hydrol 410(3–4):226–238CrossRefGoogle Scholar
  52. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A 365(1857):2053–2075CrossRefGoogle Scholar
  53. Tramblay Y, Amoussou E, Dorigo W, Mahè G (2014) Flood risk under future climate in data sparse regions: linking extreme values and flood generating processes. J Hydrol 519:549–558CrossRefGoogle Scholar
  54. Velazquez JA, Schmid J, Ricard S, Muerth MJ, Gauvin St-Denis B, Minville M, Chaumont D, Caya D, Ludwig R, Turcotte R (2013) An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol Earth Syst Sci 17:565–578. doi:10.5194/hess-17-565-2013 CrossRefGoogle Scholar
  55. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121CrossRefGoogle Scholar
  56. Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour Res 42:W02419. doi:10.1029/2005WR004065 CrossRefGoogle Scholar
  57. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34:123–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Research Institute for Geo-Hydrological Protection, National Research CouncilPerugiaItaly

Personalised recommendations