Climatic Change

, Volume 140, Issue 2, pp 273–286 | Cite as

Climate change impacts on thermal growing conditions of main fruit species in Portugal

Article

Abstract

Thermal growing conditions of temperate fruit and nut species in Portugal are assessed by two indices: growing degree hours (GDH) and chilling portions (CP). The first evaluates growing season heat accumulation (February–October), while the second determines chill accumulation during dormancy (October–February). These two indices are estimated based on gridded daily minimum and maximum temperatures from a gridded observation-based dataset (E-OBS). Both indices are statistically downscaled to a 1 km grid over mainland Portugal for 1981–2015 (35 years). Furthermore, multi-model climate change projections are provided using four EURO-CORDEX global-regional climate model chains under two future emission scenarios (RCP4.5 and RCP8.5, 2041–2070). Overall, increases of heat accumulation and decreases of chilling accumulation are projected over most of Portugal. However, owing to frequent above-optimum temperatures for temperate fruit trees, decreases of heat accumulation are expected over inner southern Portugal, which combined with significant reductions of winter chill make this region the most affected by climate change. Crop-specific GDH/CP diagrams for eight fruit classes (carob tree, almond tree, chestnut tree, citrus fruits, fresh fruits trees, olive trees, pine nut trees and vines) are analysed taking into account their current spatial distributions. Shifts in their thermal conditions under future scenarios are discussed. Thermal growing conditions of fruit species are innovatively assessed using suitable heat and chilling accumulation measures at very-high spatial resolution and under current and future climates in Portugal. These results may support the Portuguese fruit production sector in planning future strategies to cope with climate change.

Supplementary material

10584_2016_1835_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1319 kb)

References

  1. Achmakh L, Bouziane H, Aboulaich N, Trigo MM, Janati A, Kadiri M (2015) Airborne pollen of Olea europaea L. in Tetouan (NW Morocco): heat requirements and forecasts. Aerobiologia 31:191–199. doi:10.1007/s10453-014-9356-0 CrossRefGoogle Scholar
  2. Anandhi A (2016) Growing degree days - ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecol Indic 61:149–158. doi:10.1016/j.ecolind.2015.08.023 CrossRefGoogle Scholar
  3. Anderson JL, Richardson EA, Kesner CD Validation of chill unit and flower bud phenology models for’Montmorency’ sour cherry. In, 1986. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 71-78. doi: 10.17660/ActaHortic.1986.184.7Google Scholar
  4. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15:149–156. doi:10.1002/asl2.485 CrossRefGoogle Scholar
  5. Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62. doi:10.1016/j.envexpbot.2013.02.004 CrossRefGoogle Scholar
  6. Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Change 87:S153–S166. doi:10.1007/s10584-007-9367-8 CrossRefGoogle Scholar
  7. Ballesteros R, Moreno MA, Ortega JF (2015) Calibration and validation of thermal requirement models for characterizing phenological stages. Ital J Agrometeorol-Riv Ital Agrometeorol 20:47–62Google Scholar
  8. Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, Schar C (2013) Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour Res 49:1523–1536. doi:10.1029/2011WR011533 CrossRefGoogle Scholar
  9. Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130:357–372. doi:10.1016/j.scienta.2011.07.011 CrossRefGoogle Scholar
  10. Cardoso LS, Bergamaschi H, Bosco LC, De Paula VA, Nachtigal GR (2015) Chill units for apples trees in the region of Vacaria - RS Brazil. Rev Bras Frutic 37:289–295. doi:10.1590/0100-2945-136/14 CrossRefGoogle Scholar
  11. Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126:1–13. doi:10.1016/j.agrformet.2004.03.002 CrossRefGoogle Scholar
  12. Chung U, Mack L, Yun JI, Kim SH (2011) Predicting the timing of cherry blossoms in Washington, DC and Mid-Atlantic States in response to climate change. PLoS One 6:e27439. doi:10.1371/journal.pone.0027439 CrossRefGoogle Scholar
  13. Costa AC, Santos JA, Pinto JG (2012) Climate change scenarios for precipitation extremes in Portugal. Theor Appl Climatol 108:217–234. doi:10.1007/s00704-011-0528-3 CrossRefGoogle Scholar
  14. Costa R, Fraga H, Fernandes PM, Santos JA (2016) Implications of future bioclimatic shifts on Portuguese forests. Region Environ Change:1–11. doi:10.1007/s10113-016-0980-9
  15. Darbyshire R, Webb L, Goodwin I, Barlow S (2011) Winter chilling trends for deciduous fruit trees in Australia. Agric For Meteorol 151:1074–1085. doi:10.1016/j.agrformet.2011.03.010 CrossRefGoogle Scholar
  16. De Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol 125:117–127. doi:10.1016/j.agrformet.2004.02.009 CrossRefGoogle Scholar
  17. Deser C, Phillips A, Bourdette V, Teng HY (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dynam 38:527–546. doi:10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  18. Elloumi O, Ghrab M, Kessentini H, Ben Mimoun M (2013) Chilling accumulation effects on performance of pistachio trees cv. Mateur in dry and warm area climate. Sci Hortic 159:80–87. doi:10.1016/j.scienta.2013.05.004 CrossRefGoogle Scholar
  19. Erez A, Fishman S, Linsleynoakes GC (1990) The dynamic-model for rest completion in peach buds. Acta Hortic 276:165–174CrossRefGoogle Scholar
  20. Fishman S, Erez A, Couvillon GA (1987a) The temperature-dependence of dormancy breaking in plants - computer-simulation of processes studied under controlled temperatures. J Theor Biol 126:309–321. doi:10.1016/S0022-5193(87)80237-0 CrossRefGoogle Scholar
  21. Fishman S, Erez A, Couvillon GA (1987b) The temperature-dependence of dormancy breaking in plants - mathematical-analysis of a 2-step model involving a cooperative transition. J Theor Biol 124:473–483. doi:10.1016/S0022-5193(87)80221-7 CrossRefGoogle Scholar
  22. Fraga H et al (2015a) Modeling phenology, water status, and yield components of three Portuguese grapevines using the STICS crop model. Am J Enol Viticult 66:482–491. doi:10.5344/ajev.2015.15031 CrossRefGoogle Scholar
  23. Fraga H et al. (2015b) Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J Agric Sci FirstView:1–17. doi: 10.1017/S0021859615000933
  24. Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho-Pereira J, Jones GV (2016) Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int J Climatol 36:1–12. doi:10.1002/joc.4325 CrossRefGoogle Scholar
  25. Garcia F, Frutos D, Lopez G, Carrillo A, Cos J (2014) Flowering of sweet cherry (Prunus avium L.) cultivars in Cieza, Murcia, Spain. In: Ayala M, Zoffoli JP, Lang GA (eds) Vi International Cherry Symposium, vol 1020. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1, pp 191-196Google Scholar
  26. Ghrab M, Ben Mimoun M, Masmoudi MM, Ben Mechlia N (2014) Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci Hortic 178:87–94. doi:10.1016/j.scienta.2014.08.008 CrossRefGoogle Scholar
  27. Guo L, Dai JH, Ranjitkar S, Xu JC, Luedeling E (2013) Response of chestnut phenology in China to climate variation and change. Agric For Meteorol 180:164–172. doi:10.1016/j.agrformet.2013.06.004 CrossRefGoogle Scholar
  28. Guo L, Dai JH, Ranjitkar S, Yu HY, Xu JC, Luedeling E (2014) Chilling and heat requirements for flowering in temperate fruit trees. Int J Biometeorol 58:1195–1206. doi:10.1007/s00484-013-0714-3 CrossRefGoogle Scholar
  29. Guo L, Dai JH, Wang MC, Xu JC, Luedeling E (2015a) Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agric For Meteorol 201:1–7. doi:10.1016/j.agrformet.2014.10.016 CrossRefGoogle Scholar
  30. Guo L, Xu J, Dai J, Cheng J, Luedeling E (2015b) Statistical identification of chilling and heat requirements for apricot flower buds in Beijing. Chin Scientia Horticult 195:138–144. doi:10.1016/j.scienta.2015.09.006 CrossRefGoogle Scholar
  31. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008jd010201 CrossRefGoogle Scholar
  32. Hochmaier V (2014) Chilling unit accumulation and degree-day requirements of four sweet cherry (Prunus avium L.) cultivars. In: Ayala M, Zoffoli JP, Lang GA (eds) Vi International Cherry Symposium, vol 1020. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1, pp 203–207Google Scholar
  33. Hussain S, Liu GQ, Liu DF, Ahmed M, Hussain N, Teng YW (2015) Study on the expression of dehydrin genes and activities of antioxidative enzymes in floral buds of two sand pear (Pyrus pyrifolia Nakai) cultivars requiring different chilling hours for bud break. Turk J Agric For 39:930–939. doi:10.3906/tar-1407-164 CrossRefGoogle Scholar
  34. Ikinci A, Mamay M, Unlu L, Bolat I, Ercisli S (2014) Determination of heat requirements and effective heat summations of some pomegranate cultivars grown in Southern Anatolia. Erwerbs-Obstbau 56:131–138. doi:10.1007/s10341-014-0220-8 CrossRefGoogle Scholar
  35. IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, 1535 ppGoogle Scholar
  36. IPCC (2014) In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. part b: regional aspects. contribution of working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  37. Jacob D et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. doi:10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  38. Kotlarski S et al (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi:10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  39. Kretzschmar AA, Brighenti LM, Rufato L, Pelizza TR, Silveira FN, Miquelutti DJ, Faoro ID (2011) Chilling requirement for dormancy bud break in European pear. In: Sanchez EE, Sugar D, Webster AD (eds) Xi International Pear Symposium, vol 909. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1, pp 85–88Google Scholar
  40. Lee H, Sumner DA (2016) Modeling the effects of local climate change on crop acreage. Calif Agric 70:9–14. doi:10.3733/ca.v070n01p9 CrossRefGoogle Scholar
  41. Legave JM, Baculat B, Brisson N (2010) Assessment of chilling requirements of apricot floral buds: comparison of three contrasting chilling models under Mediterranean conditions. In: Herter FG, Leite GB, Raseira M (eds) Viii international symposium on temperate zone fruits in the tropics and subtropics, vol 872. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1Google Scholar
  42. Legave JM, Guedon Y, Malagi G, El Yaacoubi A, Bonhomme M (2015) Differentiated responses of apple tree floral phenology to global warming in contrasting climatic regions front. Plant Sci 6:13. doi:10.3389/fpls.2015.01054 Google Scholar
  43. Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–229. doi:10.1016/j.scienta.2012.07.011 CrossRefGoogle Scholar
  44. Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421. doi:10.1007/s00484-010-0352-y CrossRefGoogle Scholar
  45. Luedeling E, Gebauer J, Buerkert A (2009a) Climate change effects on winter chill for tree crops with chilling requirements on the Arabian Peninsula. Clim Change 96:219–237. doi:10.1007/s10584-009-9581-7 CrossRefGoogle Scholar
  46. Luedeling E, Zhang MH, Luedeling V, Girvetz EH (2009b) Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California’s Central Valley. Agr Ecosyst Environ 133:23–31. doi:10.1016/j.agee.2009.04.016 CrossRefGoogle Scholar
  47. Luedeling E, Zhang MH, McGranahan G, Leslie C (2009c) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864. doi:10.1016/j.agrformet.2009.06.013 CrossRefGoogle Scholar
  48. Luedeling E, Zhang MH, Girvetz EH (2009b) Climatic changes lead to declining winter chill for fruit and nut trees in california during 1950-2099. PloS one 4. doi: 10.1371/journal.pone.0006166
  49. Luedeling E, Steinmann KP, Zhang MH, Brown PH, Grant J, Girvetz EH (2011a) Climate change effects on walnut pests in California. Global Change Biol 17:228–238. doi:10.1111/j.1365-2486.2010.02227.x CrossRefGoogle Scholar
  50. Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011a) Climate change affects winter chill for temperate fruit and nut trees. PloS one 6. doi: 10.1371/journal.pone.0020155
  51. Luedeling E, Kunz A, Blanke MM (2013a) Identification of chilling and heat requirements of cherry trees-a statistical approach. Int J Biometeorol 57:679–689. doi:10.1007/s00484-012-0594-y CrossRefGoogle Scholar
  52. Luedeling E, Guo L, Dai JH, Leslie C, Blanke MM (2013b) Differential responses of trees to temperature variation during the chilling and forcing phases. Agric For Meteorol 181:33–42. doi:10.1016/j.agrformet.2013.06.018 CrossRefGoogle Scholar
  53. Matzneller P, Blumel K, Chmielewski FM (2014) Models for the beginning of sour cherry blossom. Int J Biometeorol 58:703–715. doi:10.1007/s00484-013-0651-1 CrossRefGoogle Scholar
  54. Maulión E et al (2014) Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering. Sci Hortic 177:112–117. doi:10.1016/j.scienta.2014.07.042 CrossRefGoogle Scholar
  55. Monteiro-Henriques T et al (2016) Bioclimatological mapping tackling uncertainty propagation: application to mainland. Portugal Int J Climatol 36:400–411. doi:10.1002/joc.4357 CrossRefGoogle Scholar
  56. Morais H, Carbonieri J (2015) Chilling hours and units in apple orchards with distinct microclimate. Rev Bras Frutic 37:1–12. doi:10.1590/0100-2945-005/14 CrossRefGoogle Scholar
  57. Moriondo M, Ferrise R, Trombi G, Brilli L, Dibari C, Bindi M (2015) Modelling olive trees and grapevines in a changing climate. Environ Model Softw 72:387–401. doi:10.1016/j.envsoft.2014.12.016 CrossRefGoogle Scholar
  58. Perez FJ, Ormeno J, Reynaert B, Rubio S (2008) Use of the dynamic model for the assessment of winter chilling in a temperate and a subtropical climatic zone of Chile. Chil J Agr Res 68:198–206CrossRefGoogle Scholar
  59. Ramirez L, Sagredo KX, Reginato GH (2010) Prediction models for chilling and heat requirements to estimate full bloom of almond cultivars in the Central Valley of Chile. In: Herter FG, Leite GB, Raseira M (eds) Viii international symposium on temperate zone fruits in the tropics and subtropics, vol 872. Acta Horticulturae. Int Soc Horticultural Science, LeuvenGoogle Scholar
  60. Rayne S, Forest K (2016) Rapidly changing climatic conditions for wine grape growing in the Okanagan Valley region of British Columbia. Canada Sci Total Environ 556:169–178. doi:10.1016/j.scitotenv.2016.02.200 CrossRefGoogle Scholar
  61. Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263. doi:10.1016/j.envexpbot.2007.06.008 CrossRefGoogle Scholar
  62. San-Miguel-Ayanz J et al (2016) European Atlas of forest tree species. publication office of the European Union. European Commission, Luxembourg. doi:10.2788/038466 Google Scholar
  63. Santesteban LG, Miranda C, Royo JB (2012) Average dates and accumulated thermal requirements for different phenophases of peach as influenced by climate. In: Girona J, Marsal J (eds) Vii international peach symposium, vol 962. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1, pp 277–284Google Scholar
  64. Schwartz MD, Hanes JM (2010) Continental-scale phenology: warming and chilling. Int J Climatol 30:1595–1598. doi:10.1002/joc.2014 CrossRefGoogle Scholar
  65. Severino V, Arbiza H, Arias M, Manzi M, Gravina A (2011) Modelos de cuantificación de frío efectivo invernal adaptados a la producción de manzana en Uruguay. Agrociencia Uruguay 15:19–28Google Scholar
  66. Spinoni J, Vogt J, Barbosa P (2015) European degree-day climatologies and trends for the period 1951-2011. Inte J Climatol 35:25-36. doi: 10.1002/joc.3959
  67. Whiting MD, Salazar MR, Hoogenboom G (2015) Development of bloom phenology models for tree fruits. In: Bourgeois G (ed) Ix international symposium on modelling in fruit research and orchard management, vol 1068. Acta Horticulturae. Int Soc Horticultural Science, Leuven 1, pp 107–112Google Scholar
  68. Zhang JL, Taylor C (2011) The dynamic model provides the best description of the chill process on ‘Sirora’ Pistachio trees in Australia. Hortscience 46:420–425Google Scholar
  69. Zhuang W, Cai B, Gao Z, Zhang Z (2016) Determination of chilling and heat requirements of 69 Japanese apricot cultivars. Eur J Agron 74:68–74. doi:10.1016/j.eja.2015.10.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITABUniversidade de Trás-os-Montes e Alto Douro, UTADVila RealPortugal
  2. 2.Escola de Ciências e TecnologiaDepartamento de FísicaVila RealPortugal

Personalised recommendations