Climatic Change

, Volume 139, Issue 1, pp 55–67 | Cite as

Natural hazards in Australia: storms, wind and hail

  • Kevin Walsh
  • Christopher J. White
  • Kathleen McInnes
  • John Holmes
  • Sandra Schuster
  • Harald Richter
  • Jason P. Evans
  • Alejandro Di Luca
  • Robert A. Warren


Current and potential future storm-related wind and hail hazard in Australia is reviewed. Confidence in the current incidence of wind hazard depends upon the type of storm producing the hazard. Current hail hazard is poorly quantified in most regions of Australia. Future projections of wind hazard indicate decreases in wind hazard in northern Australia, increases along the east coast and decreases in the south, although such projections are considerably uncertain and are more uncertain for small-scale storms than for larger storms. A number of research gaps are identified and recommendations made.


Wind Speed Tropical Cyclone Return Period Damage Wind Australian Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank their respective institutions for supporting this work. J.P. Evans is supported by funding from the NSW Office of Environment and Heritage funded NSW/ACT Regional Climate Modelling (NARCliM) Project and the Australian Research Council as part of the Future Fellowship FT110100576.

Supplementary material

10584_2016_1737_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1.04 mb)


  1. Alexander LV, Power S (2009) Severe storms inferred from 150 years of sub-daily pressure observations along Victoria's “Shipwreck Coast”. Austr Meteorol Oceanogr J 58:129–133Google Scholar
  2. Allen JT, Allen ER (2016) A review of severe thunderstorms in Australia. Atmos Res 178–179: 347–366Google Scholar
  3. Allen JT, Karoly DJ (2014) A climatology of Australian severe thunderstorm environments 1979–2011: interannual variability and ENSO influence. Int J Climatol 34:81–97CrossRefGoogle Scholar
  4. Allen JT, Karoly DJ, Mills GA (2011) A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust Meteorol Oceanogr J 61:143–158Google Scholar
  5. Allen JT, Karoly DJ, Walsh KJ (2014) Future Australian severe thunderstorm environments, Part II: the influence of a strongly warming climate on convective environments. J Clim 27:3848–3868CrossRefGoogle Scholar
  6. Allen JT, Tippett MK, Sobel AH (2015) An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J Adv Model Earth Sys 7:226–243CrossRefGoogle Scholar
  7. Amburn SA, Wolf PL (1997) VIL Density as a hail indicator. Weather Forecast 12:473–478CrossRefGoogle Scholar
  8. Bedka KM (2011) Overshooting cloud top detections using MSG SEVIRI infrared brightness temperature and their relationship to severe weather over Europe. Atmos Res 99:175–189CrossRefGoogle Scholar
  9. Braganza K, Hennessy K, Alexander L, Trewin B (2013) Changes in extreme weather. In: Christoff P (ed) Four degrees of global warming: Australia in a hot world. Routledge, Abingdon, pp 33–60Google Scholar
  10. Brooks HE (2013) Severe thunderstorms and climate change. Atmos Res 123:129–138CrossRefGoogle Scholar
  11. Brooks HE, Lee JW, Craven JP (2003) The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res 67:73–94CrossRefGoogle Scholar
  12. Browning SA, Goodwin ID (2013) Large-scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon Weather Rev 141:2416–2431CrossRefGoogle Scholar
  13. Bureau of Transport Economics (2001) Economic costs of natural disasters in Australia. Report no. 103, 170 ppGoogle Scholar
  14. Callaghan J, Power SB (2011) Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim Dyn 37:647–662CrossRefGoogle Scholar
  15. Chang EK, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos 117 (D23)Google Scholar
  16. Christensen JH et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC AR5). Cambridge University Press, Cambridge, pp. 1217–1308Google Scholar
  17. Cintineo JL, Smith TM, Lakshmanan V, Brooks HE, Ortega KL (2012) An objective high-resolution hail climatology of the contiguous United States. Weather Forecast 27:1235–1248CrossRefGoogle Scholar
  18. Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, LondonCrossRefGoogle Scholar
  19. Di Luca A, Evans JP, Pepler A, et al. (2015) Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products. J Climate 28:9530–9549Google Scholar
  20. Doswell CA III, Brooks HE, Kay MP (2005) Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Weather Forecast 20:577–595CrossRefGoogle Scholar
  21. Dowdy AJ (2014) Long-term changes in Australian tropical cyclone numbers. Atmos Sci Lett 15:292–298. doi: 10.1002/asl2.502 Google Scholar
  22. Dowdy AJ, Kuleshov Y (2014) Climatology of lightning activity in Australia: spatial and seasonal variability. Aust Meteorol Oceanogr J 6:9–14Google Scholar
  23. Dowdy AJ, Mills GA, Timbal B, et al. (2013a) Understanding rainfall projections in relation to extratropical cyclones in eastern Australia. Aust Meteorol Oceanogr J 63:355–364Google Scholar
  24. Dowdy AJ, Mills GA, Timbal B (2013b) Large-scale diagnostics of extratropical cyclogenesis in eastern Australia. Int J Climatol 33:2318–2327. doi: 10.1002/joc.3599 CrossRefGoogle Scholar
  25. Dowdy AJ, Mills GA, Timbal B, Wang Y (2013c) Changes in the risk of extratropical cyclones in eastern Australia. J Clim 26:1403–1417. doi:  10.1175/JCLI-D-12-00192. 1
  26. Elmore KL, Flamig ZL, Lakshmanan V, Kaney BT, Farmer V, Reeves HD, Rothfusz LP (2014) MPING: Crowd-sourcing weather reports for research. Bull Amer Meteorol Soc 95:1335–1342Google Scholar
  27. Evans JP, Ji F, Lee C, et al. (2014) Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci Model Dev 7:621–629. doi: 10.5194/gmd-7-621-2014 CrossRefGoogle Scholar
  28. Fyfe JC (2003) Extratropical southern hemisphere cyclones: harbingers of climate change? J Clim 16:2802–2805CrossRefGoogle Scholar
  29. Grieger J, Leckebusch G, Donat M, Schuster M, Ulbrich U (2014) Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int J Climatol 34:3400–3416CrossRefGoogle Scholar
  30. Hanstrum BN, Mills GA, Watson A, Monteverdi JP, Doswell CA III (2002) The cool-season tornadoes of California and southern Australia. Weather Forecast 17:705–722CrossRefGoogle Scholar
  31. Harper BA (1999) Numerical modelling of extreme tropical cyclone winds. J Wind Eng Ind Aerodyn 83:35–47CrossRefGoogle Scholar
  32. Heinselman PL, Ryzhkov AV (2006) Validation of polarimetric hail detection. Weather Forecast 21:839–850CrossRefGoogle Scholar
  33. Hemer MA, McInnes KL, Ranasinghe R (2011) Climate and variability bias adjustment of climate model-derived winds for a southeast Australian dynamical wave model. Ocean Dyn 62:87–104. doi: 10.1007/s10236-011-0486-4 CrossRefGoogle Scholar
  34. Hemer MA, McInnes KL, Ranasinghe R (2013) Projections of climate change-driven variations in the offshore wave climate off south eastern Australia. Int J Climatol 33:1615–1632. doi: 10.1002/joc.3537 CrossRefGoogle Scholar
  35. Hermida L, Sánchez JL, López L, Berthet C, Dessens J, García-Ortega E, Merino A (2013) Climatic trends in hail precipitation in France: spatial, altitudinal, and temporal variability. Sci World J. doi: 10.1155/2013/494971 Google Scholar
  36. Heymsfield AJ, Giammanco IM, Wright R (2014) Terminal velocities and kinetic energies of natural hailstones. Geophys Res Lett 41:8666–8672CrossRefGoogle Scholar
  37. Holland GJ, Bruyere C (2014) Recent intense hurricane response to global climate change. Clim Dyn 42:617–627. doi: 10.1007/s00382-013-1713-0. CrossRefGoogle Scholar
  38. Holland G, Lynch A, Leslie L (1987) Australian east-coast cyclones.1. Synoptic overview and case-study. Mon Weather Rev 115:3024–3036CrossRefGoogle Scholar
  39. Holmes, JD (2008 and 2011) Impact of climate change on design wind speeds in cyclonic regions. JDH Consulting and Australian Building Codes Board, June 2008 and June 2011 (revised edition)Google Scholar
  40. Holmes JD, Ginger JD (2012) The gust wind speed duration in AS/NZS 1170.2. Aust J Struct Eng 13:207–217CrossRefGoogle Scholar
  41. Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26:751–764CrossRefGoogle Scholar
  42. Hopkins LC, Holland G (1997) Australian Heavy-rain days and associated east coast cyclones: 1958–92. J Climatol 10:621–635. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  43. Jakob D (2010) Challenges in developing a high-quality surface wind-speed data-set for Australia. Aust Meteorol Oceanogr J 60:227–236Google Scholar
  44. Ji F, Evans JP, Argueso D, et al. (2015) Using large-scale diagnostic quantities to investigate change in East Coast Lows. Clim Dyn 45:2443–2453. doi: 10.1007/s00382-015-2481-9 CrossRefGoogle Scholar
  45. JMA (2014) New geostationary meteorological satellites – Himawari-8/9. Available online at
  46. Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224CrossRefGoogle Scholar
  47. Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352CrossRefGoogle Scholar
  48. Kuleshov Y, de Hoedt G, Wright W, Brewster A (2002) Thunderstorm distribution and frequency in Australia. Aust Meteorol Mag 51:145–154Google Scholar
  49. Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Wuebbles D (2013) Monitoring and understanding trends in extreme storms: State of knowledge. Bull Am Meteorol Soc 94:499–514CrossRefGoogle Scholar
  50. Lim E-P, Simmonds I (2009) Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim Dyn 33:19–32CrossRefGoogle Scholar
  51. McInnes KL, Leslie LM, McBride JL (1992) Numerical simulation of cut-off lows on the Australian east coast: sensitivity to sea-surface temperature. Int J Climatol 12:783–795CrossRefGoogle Scholar
  52. McInnes KL, Walsh KJE, Hubbert GD, Beer T (2003) Impact of sea-level rise and storm surges on a coastal community. Nat Hazards 30:187–207CrossRefGoogle Scholar
  53. McInnes KL, Erwin TA, Bathols JM (2011) Global Climate Model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lett 12:325–333. doi: 10.1002/asl.341. CrossRefGoogle Scholar
  54. McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue R (2008). Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Letters, 35Google Scholar
  55. Miller CA, Holmes JD, Henderson DJ, Ginger JD, Morrison M (2013) The response of the Dines anemometer to gusts and comparisons with cup anemometers. J Atmos Ocean Technol 30:1320–1336CrossRefGoogle Scholar
  56. Mills GA, Webb R, Davidson NE, Kepert J, Seed A, Abbs D (2010) The Pasha Bulker east coast low of 8 June 2007. Centre for Australian Weather and Climate Research Tech Rep 23:62Google Scholar
  57. Ortega KL, Smith TM, Manross KL, Scharfenberg KA, Witt A, Kolodziej AC, Gourley JJ (2009). The severe hazards analysis and verification experiment. Bull Amer Meteorol Soc  90:1519–1530Google Scholar
  58. Oliver SE, Moriarty WW, Holmes JD (2000) A risk model for design of transmission line systems against thunderstorm downburst winds. Eng Struct 22:1173–1179CrossRefGoogle Scholar
  59. Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol Appl 6:119–132CrossRefGoogle Scholar
  60. Pepler A, Coutts-Smith A (2013) A new, objective, database of East Coast Lows. Aust Meteorol Oceanogr J 63:461–472Google Scholar
  61. Pepler AS, Di Luca A, Ji F, et al. (2014) Impact of identification method on the inferred characteristics and variability of Australian East Coast Lows. Mon Weather Rev 143:864–877. doi: 10.1175/MWR-D-14-00188.1 CrossRefGoogle Scholar
  62. Ramsay HA, Camargo SJ, Kim D (2012) Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim Dyn 39:897–917CrossRefGoogle Scholar
  63. Rasmussen EN, Straka JM, Davies-Jones R, Doswell CA III, Carr FH, Eilts MD, MacGorman DR (1994) Verification of the origins of rotation in tornadoes experiment: VORTEX. Bull Am Meteorol Soc 75:995–1006CrossRefGoogle Scholar
  64. Reinecke PA, Durran DR (2009) Initial-condition sensitivities and the predictability of downslope winds. J Atmos Sci 66:3401–3341CrossRefGoogle Scholar
  65. Richter H (2007) A cool-season low-topped supercell tornado event near Sydney, Australia. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc. and Australian Bureau of Meteorology Research Center., P13A.16. [Available online at]
  66. Sanders F, Gyakum J (1980) Synoptic-dynamic climatology of the bomb. Mon Weather Rev 108:1589–1606CrossRefGoogle Scholar
  67. Schultz CJ, Petersen WA, Carey LD (2009) Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J Appl Meteorol Climatol 48:2543–2563CrossRefGoogle Scholar
  68. Schultz CJ, Petersen WA, Carey LD (2011) Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Weather Forecast 26:744–755CrossRefGoogle Scholar
  69. Schuster SS, Blong RJ, McAneney KJ (2005) Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia. Atmos Res 81:215–235CrossRefGoogle Scholar
  70. Schuster SS, Blong RJ, Speer MS (2006) A hail climatology of the Greater Sydney area and New South Wales, Australia. Int J Climatol 25:1633–1650CrossRefGoogle Scholar
  71. Sinclair MR (2002) Extratropical transition of southwest Pacific tropical cyclones. Part I: climatology and mean structure changes. Mon Weather Rev 130:590–609CrossRefGoogle Scholar
  72. Soderholm J, McGowan H, Richter H, Walsh K, Weckwerth T, Coleman M (2016) The Coastal Convective Interactions Experiment (CCIE): Understanding the role of sea breezes in climatological hailstorm hotspots in Eastern Australia. Bull Amer Meteorol Soc (in press)Google Scholar
  73. Speer M, Wiles P, Pepler A (2009) Low pressure systems off the New South Wales coast and associated hazardous weather: establishment of a database. Aust Meteorol Oceanogr J 58:29–39Google Scholar
  74. Standards Australia (2011) Structural design actions. Part 2: Wind actions, Australian/New Zealand Standard, AS/NZS 1170.2:2011, Standards Australia, Sydney, NSWGoogle Scholar
  75. Strachan J, Vidale PL, Hodges K, Roberts M, Demory M-E (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133–152. doi: 10.1175/JCLI-D-12-00012.1. CrossRefGoogle Scholar
  76. Troccoli A, Muller K, Coppin P, Davy R, Russell C, Hirsch AL (2012) Long-term wind speed trends over Australia. J Clim 25:170–183CrossRefGoogle Scholar
  77. Walsh KJE, Camargo SJ, Vecchi GA, et al. (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017CrossRefGoogle Scholar
  78. Wang CH, Wang X, Khoo YB (2013) Extreme wind gust hazard in Australia and its sensitivity to climate change. Nat Hazards 67: 549–567Google Scholar
  79. Witt A, Eilts MD, Stumpf GJ, Johnson JT, Mitchell ED, Thomas KW (1998) An enhanced hail detection algorithm for the WSR-88D. Weather Forecast 13:386–303Google Scholar
  80. Wurman W, Dowell D, Richardson Y, Markowski P, Rasmussen E, Burgess D, Wicker L, Bluestein HB (2012) The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull Am Meteorol Soc 93:1147–1170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kevin Walsh
    • 1
  • Christopher J. White
    • 2
    • 3
  • Kathleen McInnes
    • 4
  • John Holmes
    • 5
  • Sandra Schuster
    • 6
    • 7
  • Harald Richter
    • 8
  • Jason P. Evans
    • 9
  • Alejandro Di Luca
    • 9
  • Robert A. Warren
    • 10
  1. 1.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  2. 2.School of Engineering and ICTUniversity of TasmaniaHobartAustralia
  3. 3.Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartAustralia
  4. 4.CSIRO Marine and Atmospheric ResearchAspendaleAustralia
  5. 5.JDH ConsultingKingstonAustralia
  6. 6.Independent consultantSydneyAustralia
  7. 7.Independent consultantUlmGermany
  8. 8.Australian Bureau of MeteorologyMelbourneAustralia
  9. 9.Climate Change Research Centre & ARC Centre of Excellence for Climate System ScienceUNSWSydneyAustralia
  10. 10.Monash UniversityClaytonAustralia

Personalised recommendations