Climatic Change

, Volume 138, Issue 1–2, pp 13–24 | Cite as

Future aerosol emissions: a multi-model comparison

  • Steven J. SmithEmail author
  • Shilpa Rao
  • Keywan Riahi
  • Detlef P. van Vuuren
  • Katherine V. Calvin
  • Page Kyle


This paper compares projections over the twenty-first century of SO2, BC, and OC emissions from three technologically detailed, long-term integrated assessment models. The character of the projections and the response of emissions due to a comprehensive climate policy are discussed focusing on the sectoral level. In a continuation of historical experience, aerosol and precursor emissions are increasingly decoupled from carbon dioxide emissions over the twenty-first century due to a combination of emission controls and technology shifts over time. Implementation of a comprehensive climate policy further reduces emissions, although there is significant variation in this response by sector and by model: the response has many similarities between models for the energy transformation and transportation sectors, with more diversity in the response for the building and industrial sectors. Much of these differences can be traced to specific characteristics of reference case end-use and supply-side technology deployment and emissions control assumptions, which are detailed by sector.


Black Carbon Climate Policy Reference Case Aerosol Emission Representative Concentration Pathway Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SJS was supported for this work by the Climate Change Division, U.S. Environmental Protection Agency with additional support from the Global Technology Strategy Project at PNNL. DvV acknowledges the financial contribution received from the FP7 project PEGASOS, financed by the European Commission. The authors thank Linh Vu for assistance with data processing. We also thank the anonymous referees whose comments significantly improved the paper.

Supplementary material

10584_2016_1733_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2.40 mb)


  1. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Hoglund-Isaksson L, Klimont Z, Nguyen B, Posch M, Rafaj P, Sandler R, Schopp W, Wagner F, Winiwarter W (2011) Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ Model Softw 26:1489–1501CrossRefGoogle Scholar
  2. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung SK, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Glob Biogeochem Cycles:21. doi: 10.1029/2006GB002840
  3. Chuwah C, Van Noije T, Van Vuuren DP, Hazeleger W, Strunk A, Deetman S, Beltran AM, Van Vliet J (2013) Implications of alternative assumptions regarding future air pollution control in scenarios similar to the representative concentration pathways. Atmos Environ 79:787–801CrossRefGoogle Scholar
  4. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, Mcconnell JR, Naik V, Riahi K, Van Vuuren DP (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039CrossRefGoogle Scholar
  5. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  6. Myhre G, Shindell D, BréOn F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  7. Ramanathan V, Xu YY (2010) The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues. Proceedings of the National Academy of Sciences of the United States of America 107:8055–8062CrossRefGoogle Scholar
  8. Rao S, Chirkov V, Dentener F, Dingenen R, Pachauri S, Purohit P, Amann M, Heyes C, Kinney P, Kolp P, Klimont Z, Riahi K, Schoepp W (2012) Environmental modeling and methods for estimation of the Global Health impacts of air pollution. Environmental Modeling & Assessment 17:613–622CrossRefGoogle Scholar
  9. Rao, S., Pachauri, S., Dentener, F., Kinney, P., Klimont, Z., Riahi, K. & Schoepp, W. (2013). Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob Environ Chang 23(5):1122–1130Google Scholar
  10. Rao S, Z Klimont, SJ Smith, R van Dingenen, F Dentener, L Bouwman, K Riahi, M Amann, B Bodirsky, D Van Vuuren, L Reis, KV Calvin, L Drouet, O Fricko, S Fujimori, D Gernaat, P Havlik, M Harmsen, T Hasegawa, C Heyes, J Hilaire, G Luderer, T Masui, E Stehfest, J Strefler, S van der Sluis, and M Tavoni (2016) Future Air Pollution in the Shared Socio-Economic Pathways. Global Environmental Change (accepted)Google Scholar
  11. Riahi K, Dentener F, Gielen D, Grubler A, Jewell J, Klimont Z, Krey V, McCollum D, Pachauri S, Rao S, Van Ruijven BJ (2012) Chapter 17. Energy pathways for sustainable development. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global Energy AssessmentToward a Sustainable Future. Cambridge University Press, USAGoogle Scholar
  12. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57CrossRefGoogle Scholar
  13. Rogelj J, Schaeffer M, Meinshausen M, Shindell DT, Hare W, Klimont Z, Velders GJM, Amann M, Schellnhuber HJ (2014) Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proceedings of the National Academy of Sciences 111:16325–16330CrossRefGoogle Scholar
  14. Rose S, Richels R, Smith S, Riahi K, Strefler J, Van Vuuren D (2014) Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios. Clim Chang 123:511–525CrossRefGoogle Scholar
  15. Smith SJ, Mizrahi A (2013) Near-term climate mitigation by short-lived forcers. Proceedings of the National Academy of Sciences 110:14202–14206CrossRefGoogle Scholar
  16. Smith SJ, West JJ, Kyle P (2011) Economically consistent long-term scenarios for air pollutant emissions. Clim Chang 108:619–627CrossRefGoogle Scholar
  17. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  18. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94CrossRefGoogle Scholar
  19. UNEP (2011) Near-term climate protection and clean air benefits: actions for controlling short-lived climate forcers. United Nations Environment Programme (UNEP), Nairobi, KenyaGoogle Scholar
  20. Van Vuuren D, Stehfest E, Den Elzen MJ, Kram T, Van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, Van Ruijven B (2011a) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116CrossRefGoogle Scholar
  21. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011b) The representative concentration pathways: an overview. Clim Chang 109:5–31CrossRefGoogle Scholar
  22. Yan F, Winijkul E, Bond TC, Streets DG (2014) Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions. Atmos Environ 87:189–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Steven J. Smith
    • 1
    Email author
  • Shilpa Rao
    • 2
  • Keywan Riahi
    • 2
  • Detlef P. van Vuuren
    • 3
    • 4
  • Katherine V. Calvin
    • 1
  • Page Kyle
    • 1
  1. 1.Joint Global Change Research Institute, PNNLCollege ParkUSA
  2. 2.International Institute for Applied Systems AnalysisLaxenburgAustria
  3. 3.PBL Netherlands Environmental Assessment AgencyBilthovenNetherlands
  4. 4.Copernicus Institute for Sustainable Development, Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations