Climatic Change

, Volume 138, Issue 1–2, pp 55–69 | Cite as

Observation-based blended projections from ensembles of regional climate models

  • Esther Salazar
  • Dorit Hammerling
  • Xia Wang
  • Bruno Sansó
  • Andrew O. Finley
  • Linda O. Mearns
Article

Abstract

We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.

Supplementary material

10584_2016_1722_MOESM1_ESM.pdf (209 kb)
(PDF 209 KB)

References

  1. Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc B 70:825–848CrossRefGoogle Scholar
  2. Beltrán F, Sansó B, Lemos R, Mendelssohn R (2012) Joint projections of north pacific sea surface temperature from different global climate models. Environmetrics 23:451–465. doi:10.1002/env.2150 CrossRefGoogle Scholar
  3. Berliner LM, Kim Y (2008) Bayesian design and analysis for Superensemble-Based climate forecasting. J Clim 21(9):1891–1910. doi:10.1175/2007JCLI1619.1 CrossRefGoogle Scholar
  4. Berliner LM, Millif R, Wikle C (2003) Bayesian hierarchical modeling of air-sea interactions. J Geophys Res Oceans. doi:10.1029/2002JC001413
  5. Buser CM, Künsch HR, Lüthi D, Wild M, Schär C (2009) Bayesian multi-model projection of climate: bias assumptions and interannual variability. Clim Dyn 33(6):849–868. doi:10.1007/s00382-009-0588-6 CrossRefGoogle Scholar
  6. Chandler RE (2013) Exploiting strength, discounting weakness: combining information from multiple climate simulators. Philos Trans R Soc London A Math Phys Eng Sci 371(1991). doi:10.1098/rsta.2012.0388. http://rsta.royalsocietypublishing.org/content/371/1991/20120388
  7. Cressie N, Wikle CK (2011) Statistics for Spatio-Temporal data. Wiley, HobokenGoogle Scholar
  8. Finley A, Banerjee S, Gelfand A (2015) Spbayes for large univariate and multivariate point-referenced spatio-temporal data models. J Stat Softw 63:1–28CrossRefGoogle Scholar
  9. Furrer R, Sain SR, Nychka DW, Meehl GA (2007) Multivariate Bayesian analysis of atmosphere-ocean general circulation models. Environ Ecol Stat 14(3):249–266. doi:10.1007/s10651-007-0018-z CrossRefGoogle Scholar
  10. Gamerman D, Lopes HF (2006) Markov chain Monte Carlo - stochastic simulation for Bayesian inference, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  11. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  12. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging (REA)” method. J Clim 15:1141–1158CrossRefGoogle Scholar
  13. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatolo 27:1119–1152CrossRefGoogle Scholar
  14. Harris GR, Sexton DMH, Booth BBB, Collins M, Murphy JM (2013) Probabilistic projections of transient climate change. Clim Dyn 40(11):2937–2972. doi:10.1007/s00382-012-1647-y CrossRefGoogle Scholar
  15. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) “NCEP-DOE AMIP-II” reanalysis. Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  16. Mearns L, Gutowski W, Jones R, Leung L, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for North America. EOS 90:311–312CrossRefGoogle Scholar
  17. Mearns L, Sain S, Leung L, Bukovsky M, McGinnis S, Biner S, Caya D, Arritt R, Gutowski W, Takle E, Snyder M, Jones R, Nunes A, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim Chang 120(4):965–975. doi:10.1007/s10584-013-0831-3 CrossRefGoogle Scholar
  18. Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  19. Rougier J, Goldstein M, House L (2013) Second-order exchangeability analysis for multi-model ensembles. J Am Stat Assoc 108:852–863. doi:10.1080/01621459.2013.802963 CrossRefGoogle Scholar
  20. Salazar E, Sansó B, Finley A, Hammerling D, Steinsland I, Wang X, Delamater P (2011) Comparing and blending regional climate model predictions for the american southwest. J Agric Biol Environ Stat 16:586–605. doi:10.1007/s13253-011-0074-6 CrossRefGoogle Scholar
  21. Sexton DMH, Murphy JM, Collins M, Webb MJ (2011) Multivariate probabilistic projections using imperfect climate models part i: outline of methodology. Clim Dyn 38(11):2513–2542. doi:10.1007/s00382-011-1208-9 Google Scholar
  22. Smith R, Tebaldi C, Nychka D, Mearns L (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc:97–116Google Scholar
  23. Stephenson DB, Collins M, Rougier JC, Chandler RE (2012) Statistical problems in the probabilistic prediction of climate change. Environmetrics 23:364–372. doi:10.1002/env.2153 CrossRefGoogle Scholar
  24. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  25. Tebaldi C, Arblaster J, Knutti R (2011) Mapping model agreement on future climate projections. Geophys Res Lett 38:L2371. doi:10.1029/2011GL049863 CrossRefGoogle Scholar
  26. Tebaldi C, Sansó B (2009) Joint projections of temperature and precipitation change from multiple climate models: a hierarchical bayes approach. J R Stat Soc A 172:83–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Esther Salazar
    • 1
  • Dorit Hammerling
    • 2
  • Xia Wang
    • 3
  • Bruno Sansó
    • 4
  • Andrew O. Finley
    • 5
  • Linda O. Mearns
    • 2
  1. 1.U.S. Food and Drug AdministrationCenter for Tobacco ProductsSilver SpringUSA
  2. 2.Institute for Mathematics Applied to GeosciencesNational Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  4. 4.Department of Applied Mathematics and StatisticsUniversity of CaliforniaSanta CruzUSA
  5. 5.Departments of Forestry and GeographyMichigan State UniversityLansingUSA

Personalised recommendations