Skip to main content

Advertisement

Log in

Natural hazards in Australia: floods

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Floods are caused by a number of interacting factors, making it remarkably difficult to explain changes in flood hazard. This paper reviews the current understanding of historical trends and variability in flood hazard across Australia. Links between flood and rainfall trends cannot be made due to the influence of climate processes over a number of spatial and temporal scales as well as landscape changes that affect the catchment response. There are also still considerable uncertainties in future rainfall projections, particularly for sub-daily extreme rainfall events. This is in addition to the inherent uncertainty in hydrological modelling such as antecedent conditions and feedback mechanisms.

Research questions are posed based on the current state of knowledge. These include a need for high-resolution climate modelling studies and efforts in compiling and analysing databases of sub-daily rainfall and flood records. Finally there is a need to develop modelling frameworks that can deal with the interaction between climate processes at different spatio-temporal scales, so that historical flood trends can be better explained and future flood behaviour understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.csiro.au/en/Research/LWF/Areas/Water-resources/Assessing-water-resources/Sustainable-yields

References

  • Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56:1–18

    Google Scholar 

  • Allen M (2003) Liability for climate change. Nature 421:891–892. doi:10.1038/421891a

    Article  Google Scholar 

  • Argüeso D, Evans J, Fita L (2013) Precipitation bias correction of very high resolution regional climate models. Hydrol Earth Syst Sci Discuss 10

  • Arnell N, Gosling S (2014) The impacts of climate change on river flood risk at the global scale. Clim Chang 1–15. doi:10.1007/s10584-014-1084-5

  • Engineers Australia (1987) Australian rainfall and runoff. Engineers Australia, Canberra

    Google Scholar 

  • Beringer J, Hutley LB, Hacker JM, Neininger B (2011) Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: from point to region. Agric For Meteorol 151:1409–1416

    Article  Google Scholar 

  • Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sci Discuss 4:203–213

    Article  Google Scholar 

  • Blöschl G et al (2015) Increasing river floods: fiction or reality? Wiley Interdiscip Rev Water. doi:10.1002/wat2.1079

    Google Scholar 

  • Bureau of Meteorology (2015) Hydrologic reference stations, October 2015 edn., http://www.bom.gov.au/water/hrs/index.shtm

  • Callaghan J, Power SB (2014) Major coastal flooding in southeastern Australia 1860-2012, associated deaths and weather systems. Aust Meteorol Oceanogr J 64:183–213

    Google Scholar 

  • Chiew FH, Piechota TC, Dracup JA, McMahon TA (1998) El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204:138–149

    Article  Google Scholar 

  • Cordery I (2003) A case for increased collection of water resources data Australian. J Water Resour 6:95–104

    Google Scholar 

  • CSIRO, Bureau of Meteorology (2015) Climate change in Australia projections for Australia’s NRM regions: technical report. CSIRO and Bureau of Meteorology, Australia

    Google Scholar 

  • Dankers R et al (2014) First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc Natl Acad Sci 111:3257–3261. doi:10.1073/pnas.1302078110

    Article  Google Scholar 

  • Evans JP, McCabe M (2013) Effect of model resolution on a regional climate model simulation over southeast Australia. Clim Res 56:131–145

    Article  Google Scholar 

  • Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39

  • Evans S, Marchand R, Ackerman T (2014) Variability of the Australian monsoon and precipitation trends at Darwin. J Climate 27:8487–8500. doi:10.1175/Jcli-D-13-00422.1

    Article  Google Scholar 

  • Gaál L, Szolgay J, Kohnová S, Parajka J, Merz R, Viglione A, Blöschl G (2012) Flood timescales: understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour Res 48:n/a-n/a. doi:10.1029/2011WR011509

  • Gallant AJ, Hennessy KJ, Risbey J (2007) Trends in rainfall indices for six Australian regions: 1910–2005. Aust Meteorol Mag 56:223–241

    Google Scholar 

  • Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: international disaster database. Université Catholique de Louvain,, Brussels, Belgium

  • Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrol Process 25:2771–2784. doi:10.1002/Hyp.8040

    Article  Google Scholar 

  • Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37. doi:10.1029/2010GL045081

  • Harrigan S, Murphy C, Hall J, Wilby R, Sweeney J (2014) Attribution of detected changes in streamflow using multiple working hypotheses. Hydrol Earth Syst Sci 18:1935–1952

    Article  Google Scholar 

  • Hirabayashi Y et al (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821. doi:10.1038/nclimate1911

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/CBO9781107415324

  • Ishak EH, Rahman A, Westra S, Sharma A, Kuczera G (2013) Evaluating the non-stationarity of Australian annual maximum flood. J Hydrol 494:134–145. doi:10.1016/j.jhydrol.2013.04.021

    Article  Google Scholar 

  • Jakob D, Karoly DJ, Seed A (2011a) Non-stationarity in daily and sub-daily intense rainfall—part 1: Sydney Australia. Nat Hazards Earth Syst Sci 11:2263–2271. doi:10.5194/nhess-11-2263-2011

    Article  Google Scholar 

  • Jakob D, Karoly DJ, Seed A (2011b) Non-stationarity in daily and sub-daily intense rainfall—part 2: regional assessment for sites in south-east Australia. Nat Hazards Earth Syst Sci 11:2273–2284. doi:10.5194/nhess-11-2273-2011

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang 4:570–576. doi:10.1038/Nclimate2258

    Article  Google Scholar 

  • Kiem AS, Verdon-Kidd DC (2013) The importance of understanding drivers of hydrocliamtic variability for robust flood risk planning in the coastal zone Australian. J Water Resour 17:126–134

    Google Scholar 

  • Kiem AS, Franks SW, Kuczera G (2003) Muti-decadal variability of flood risk. Geophys Res Lett 30:1035. doi:10.1029/2002GL015992

    Article  Google Scholar 

  • Kundzewicz ZW et al (2013) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59:1–28. doi:10.1080/02626667.2013.857411

    Article  Google Scholar 

  • Lau WKM, Wu HT, Kim KM (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169

    Article  Google Scholar 

  • Laz OU, Rahman A, Yilmaz A, Haddad K (2014) Trends in sub-hourly, sub-daily and daily extreme rainfall events in eastern Australia. J Water Clim Chang 5:667–675

    Article  Google Scholar 

  • Leonard M et al (2014) A compound event framework for understanding extreme impacts. Wiley Interdiscip Rev Clim Chang 5:113–128

    Article  Google Scholar 

  • McKay G (2007) THE LIFE BLOOD OF FLOODS flood producing weather systems. Paper presented at the 47th Annual NSW Floodplain Management Conference, Gunnedah, 27 February - 1 March 2007

  • Merz B, Vorogushyn S, Uhlemann S, Delgado J, Hundecha Y (2012) HESS opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”. Hydrol Earth Syst Sci 16:1379–1387

    Article  Google Scholar 

  • Micevski T, Franks SW, Kuczera G (2006) Multidecadal variability in coastal eastern Australian flood data. J Hydrol 327:219–225. doi:10.1016/j.jhydrol.2005.11.017

    Article  Google Scholar 

  • Mirus BB, Loague K (2013) How runoff begins (and ends): characterizing hydrologic response at the catchment scale. Water Resour Res 49:2987–3006. doi:10.1002/wrcr.20218

    Article  Google Scholar 

  • Pall P et al (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385

    Article  Google Scholar 

  • Pena-Arancibia JL, Dijk AIJMV, Guerschman JP, Mulligan M, Bruijnzeel LA, McVicar TR, van Dijk AIJM (2012) Detecting changes in streamflow after partial woodland clearing in two large catchments in the seasonal tropics. J Hydrol (Amsterdam) 416(417):60–71. doi:10.1016/j.jhydrol.2011.11.036

    Article  Google Scholar 

  • Perkins SE, Moise A, Whetton P, Katzfey J (2014) Regional changes of climate extremes over Australia—a comparison of regional dynamical downscaling and global climate model simulations. Int J Climatol 34:3456–3478. doi:10.1002/joc.3927

    Article  Google Scholar 

  • Power S, Casey T, Folland CK, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynam 15:319–324

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  • Rouillard A, Skrzypek G, Dogramaci S, Turney C, Grierson P (2015) Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia. Hydrol Earth Syst Sci 19:2057–2078

    Article  Google Scholar 

  • Shi G, Cai W, Cowan T, Ribbe J, Rotstayn L, Dix M (2008) Variability and trend of North West Australia rainfall: observations and coupled climate modeling. J Climate 21:2938–2959

    Article  Google Scholar 

  • Shuster WD, Bonta J, Thurston H, Warnemuende E, Smith DR (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water J 2:263–275. doi:10.1080/15730620500386529

    Article  Google Scholar 

  • Trancoso R, Larsen JR, McAlpine C, McVicar TR, Phinn S (2016) Linking the Budyko framework and the Dunne diagram. J Hydrol 535:581–597

    Article  Google Scholar 

  • van Dijk AIJM, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manag 251:1–9. doi:10.1016/j.foreco.2007.06.010

    Article  Google Scholar 

  • Verdon DC, Wyatt AM, Kiem AS, Franks SW (2004) Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour Res 40. doi:10.1029/2004wr003234

  • Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci 111:15659–15664

    Article  Google Scholar 

  • Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406:119–128. doi:10.1016/j.jhydrol.2011.06.014

    Article  Google Scholar 

  • Westra S et al (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555. doi:10.1002/2014rg000464

    Article  Google Scholar 

  • White CJ, McInnes KL, Cechet RP, Corney SP, Grose MR, Holz G, Katzfey JJ, Bindoff NL (2013) On regional dynamical downscaling for the assessment and projection of future temperature and precipitation extremes across Tasmania, Australia. Clim Dyn 41:3145–3165. doi:10.1007/s00382-013-1718-8

  • Wu P, Christidis N, Stott P (2013) Anthropogenic impact on Earth/’s hydrological cycle. Nat Clim Chang 3:807–810

    Article  Google Scholar 

  • Yilmaz A, Perera B (2013) Extreme rainfall nonstationarity investigation and intensity–frequency–duration relationship. J Hydrol Eng 19:1160–1172

    Article  Google Scholar 

Download references

Acknowledgments

This paper was a result of collaboration through the working group ‘Trends and Extremes’ as part of the Australian Water and Energy Exchanges Initiative (OzEWEX). J. Evans was supported by the Australian Research Council Future Fellowship FT110100576. A. Van Dijk was supported through Australian Research Council’s Discovery Projects funding scheme (project number DP40103679). S. Westra and F. Johnson were supported through Australian Research Council’s Discovery Project DP150100411. The constructive comments from the anonymous reviewers helped to improve the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Johnson.

Additional information

This article is part of a Special Issue on “The effect of historical and future climate changes on natural hazards in Australia” edited by Seth Westra, Chris White and Anthony Kiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, F., White, C.J., van Dijk, A. et al. Natural hazards in Australia: floods. Climatic Change 139, 21–35 (2016). https://doi.org/10.1007/s10584-016-1689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1689-y

Keywords

Navigation