Climatic Change

, Volume 137, Issue 1–2, pp 261–274 | Cite as

Sensitivity of cork growth to drought events: insights from a 24-year chronology

  • Vanda OliveiraEmail author
  • Alexandra Lauw
  • Helena Pereira


Increasing drought frequency and severity are expected in the Mediterranean regions that will increase their vulnerability and affect forest production and product quality. The sensitivity of cork growth to extreme drought events is analyzed using a 24-year chronology (1986–2009), including several drought occurrences, and is built using extensive sampling (1128 cork samples). The chronology is analyzed in relation to several climate variables e.g. precipitation, temperature and the standard precipitation evapotranspiration index (SPEI) at different time scales (1–24 months). The significant time scale at which drought affected most the cork growth is determined and a response function is built. The cork-ring chronology showed significant response to climatic variables with a relevant growth decrease in 1995, 1999 and 2005 matching the severe drought events of 1994–1995, 1998–1999 and 2004–2006. When drought conditions ended cork oaks recovered the cork growth revealing high resilience. High responsiveness and sensitivity to later spring precipitation is found with a cork growth increment in response to the increase of water availability. Cork growth is extremely hindered by drought conditions in short time scales (from 2 to 11 months). A scenario of decreased cork growth is expected as a result of climate adverse conditions, with implications in the raw-material industrial adequacy and therefore a strong impact on the overall economy of the sector.


Standard Precipitation Evapotranspiration Index Spring Precipitation Severe Drought Event Cork Production Cork Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was carried out under the framework of Centro de Estudos Florestais, a research unit funded by Fundação para a Ciência e a Tecnologia, Portugal (UID/AGR/00239/2013).

Funding from Fundação para a Ciência e a Tecnologia is acknowledged by Vanda Oliveira as doctoral student (SFRH/BD/77550/2011) and by Alexandra Lauw as doctoral student through SUSFOR programme (PD/BD/52694/2014).

The authors acknowledge the collaboration of Associação dos Produtores Florestais do Concelho de Coruche e Limítrofes (APFC) in material supply.


  1. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023. doi: 10.1002/joc.3887 CrossRefGoogle Scholar
  2. Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF, Gouveia C, Mériaux C, Chaves MM, Pereira JS (2014) Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agric For Meteorol 184: 230–242. doi: 10.1016/j.agrformet.2013.10.004
  3. Caritat A, Molinas M, Gutiérrez E (1996) Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, Southwestern Spain). For Ecol Manag 86:113–120Google Scholar
  4. Caritat A, Gutiérrez E, Molinas M (2000) Influence of weather on cork-ring width. Tree Physiol 20:893–900CrossRefGoogle Scholar
  5. Costa A, Pereira H, Oliveira A (2001) A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees 15:438–443. doi: 10.1007/s004680100119 CrossRefGoogle Scholar
  6. Costa A, Pereira H, Oliveira A (2002) Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann For Sci 59:429–437. doi: 10.1051/forest:2002017 CrossRefGoogle Scholar
  7. Costa A, Pereira H, Oliveira A (2003) Variability of radial growth in cork oak adult trees under cork production. For Ecol Manag 175:239–246. doi: 10.1016/S0378-1127(02)00145-7 CrossRefGoogle Scholar
  8. Costa A, Madeira M, Oliveira AC (2008) The relationship between cork oak growth patterns and soil, slope and drainage in cork oak woodland in Southern Portugal. For Ecol Manag 255:1525–1535. doi: 10.1016/j.foreco.2007.11.008 CrossRefGoogle Scholar
  9. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occuring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803CrossRefGoogle Scholar
  10. David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, Cermak J, Chaves MM, Pereira JS, David JS (2013) Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. For Ecol Manag 307:136–146. doi: 10.1016/j.foreco.2013.07.012 CrossRefGoogle Scholar
  11. Ferreira A, Lopes F, Pereira H (2000) Caractérisation de la croissance et de la qualité du liège dans une région de production. Ann For Sci 57:187–193. doi: 10.1051/forest:2000169 CrossRefGoogle Scholar
  12. Fortes MA, Rosa ME, Pereira H (2004) A Cortiça. ISTPress, LisbonGoogle Scholar
  13. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  14. García-Herrera R, Paredes D, Trigo RM, Trigo IF, Hernandez E, Barriopedro D, Mendes MA (2007) The outstanding 2004/05 drought in the Iberian peninsula: associated atmospheric circulation. J Hydrometeorol 8:483–498. doi: 10.1175/JHM578.1 CrossRefGoogle Scholar
  15. Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I (2009) Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66:802. doi: 10.1051/forest/2009080 CrossRefGoogle Scholar
  16. Gea-Izquierdo G, Fernández-de-Uñu L, Cañellas I (2013) Growth projections reveal local vulnerability of Mediterranean oaks with rising temperatures. For Ecol Manag 305:282–293. doi: 10.1016/j.foreco.2013.05.058 CrossRefGoogle Scholar
  17. Graça J, Pereira H (2004) The periderm development in Quercus suber. IAWA Bull 25:325–336. doi: 10.1163/22941932-90000369 CrossRefGoogle Scholar
  18. Granda E, Camarero JJ, Gimeno TE, Martínez-Fernández J, Valladares F (2013) Intensity and timing of warming and drought differentially affect growth patterns of co-occuring Mediterranean tree species. Eur J For Res 132:469–480. doi: 10.1007/s10342-013-0687-0 CrossRefGoogle Scholar
  19. Mendivelso HA, Camarero JJ, Gutiérrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23. doi: 10.1016/j.agrformet.2013.12.010
  20. Mérian P, Pierrat J-C, Lebourgeois F (2013) Effect of sampling effort on the regional chronology statistics and climate-growth relationships estimation. Dendrochronologia 31:58–67. doi: 10.1016/j.dendro.2012.07.001 CrossRefGoogle Scholar
  21. Miranda PMA, Valente MA, Tomé AR, Trigo R, Coelho MFES, Aguiar A, Azevedo EB (2006) O clima de Portugal nos séculos XX e XXI. In: Santos FD, Miranda PMA (eds) Alterações climáticas em Portugal Cenários, impactos e medidas de adaptação, 1st edn. Gradiva, Lisbon, pp. 45–113Google Scholar
  22. Natividade JV (1950) Subericultura. DGSFA, LisbonGoogle Scholar
  23. Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in North-Eastern Spain. Agric For Meteorol 151:1800–1811. doi: 10.1016/j.agrformet.2011.07.018 CrossRefGoogle Scholar
  24. Pereira H (2007) Cork: biology, production and uses. Elsevier, AmsterdamGoogle Scholar
  25. Pereira H (2015) The rationale behind cork properties: a review of structure and chemistry. Bioresources 10(3):6207–6229Google Scholar
  26. Pereira H, Rosa ME, Fortes MA (1987) The cellular structure of cork from Quercus suber L. IAWA Bull 8:213–218. doi: 10.1163/22941932-90001048 CrossRefGoogle Scholar
  27. Surový P, Olbrich A, Polle A, Ribeiro NA, Sloboda B, Langenfeld-Heyser R (2009) A new method for measurement of annual growth rings in cork by means of autofluorescence. Trees 23:1237–1246. doi: 10.1007/s00468-009-0363-7 CrossRefGoogle Scholar
  28. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi: 10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  29. Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sánchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural and hydrological applications. Earth Interact 16:1–27. doi: 10.1175/2012EI000434.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Vanda Oliveira
    • 1
    Email author
  • Alexandra Lauw
    • 1
  • Helena Pereira
    • 1
  1. 1.Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal

Personalised recommendations