Climatic Change

, Volume 136, Issue 1, pp 7–22 | Cite as

Will economic growth and fossil fuel scarcity help or hinder climate stabilization?

Overview of the RoSE multi-model study
  • Elmar Kriegler
  • Ioanna Mouratiadou
  • Gunnar Luderer
  • Nico Bauer
  • Robert J. Brecha
  • Katherine Calvin
  • Enrica De Cian
  • Jae Edmonds
  • Kejun Jiang
  • Massimo Tavoni
  • Ottmar Edenhofer
Article

Abstract

We investigate the extent to which future energy transformation pathways meeting ambitious climate change mitigation targets depend on assumptions about economic growth and fossil fuel availability. The analysis synthesizes results from the RoSE multi-model study aiming to identify robust and sensitive features of mitigation pathways under these inherently uncertain drivers of energy and emissions developments. Based on an integrated assessment model comparison exercise, we show that economic growth and fossil resource assumptions substantially affect baseline developments, but in no case they lead to the significant greenhouse gas emission reduction that would be needed to achieve long-term climate targets without dedicated climate policy. The influence of economic growth and fossil resource assumptions on climate mitigation pathways is relatively small due to overriding requirements imposed by long-term climate targets. While baseline assumptions can have substantial effects on mitigation costs and carbon prices, we find that the effects of model differences and the stringency of the climate target are larger compared to that of baseline assumptions. We conclude that inherent uncertainties about socio-economic determinants like economic growth and fossil resource availability can be effectively dealt with in the assessment of mitigation pathways.

Supplementary material

10584_2016_1668_MOESM1_ESM.docx (1.2 mb)
ESM 1(DOCX 1.22 mb)
10584_2016_1668_MOESM2_ESM.docx (1.6 mb)
ESM 2(DOCX 1.62 mb)

References

  1. Bauer N, Baumstark L, Leimbach M (2012) The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds. Clim Change 114:145–168Google Scholar
  2. Bauer N, Mouratiadou I, Luderer G, et al (this issue) Global fossil energy markets and climate change mitigation – an analysis with REMIND. Clim Change. doi:10.1007/s10584-013-0901-6
  3. Bosetti V, Carraro C, Galeotti M, et al (2006) WITCH: a world induced technical change hybrid model. Energy J 27 (Special Issue 2):13–38Google Scholar
  4. Bosetti V, Carraro C, De Cian E, et al. (2009) The 2008 WITCH model: new model features and baseline. FEEM Working Paper 2009:085Google Scholar
  5. Bosetti V, Marangoni G, Borgonovo E, et al. (2015) Sensitivity to energy technology costs: A multi-model comparison analysis. Energy Policy 80:244–263. doi:10.1016/j.enpol.2014.12.012
  6. Clarke L, Jiang K, Akimoto K, et al. (2014) Assessing Transformation Pathways. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  7. Clarke L, Kyle P, Wise M, et al. (2008) CO2 emissions mitigation and technological advance: an updated analysis of advanced technology scenarios. PNNL Report. Pacific Northwest National Laboratory, Richland, WAGoogle Scholar
  8. De Cian E, Sferra F, Tavoni M (this issue) The influence of economic growth, population, and fossil fuel scarcity on energy investments. Clim Change. doi:10.1007/s10584-013-0902-5
  9. Edmonds J, Reilly JM (1985) Global energy: assessing the future. Oxford University Press, New YorkGoogle Scholar
  10. Edmonds J, Wise M, Pitcher H, et al. (1997) An integrated assessment of climate change and the Accelerated Introduction of advanced energy technologies - an application of MiniCAM 1.0. Mitig Adapt Strateg Glob. Change 1:311–339. doi:10.1023/B:MITI.0000027386.34214.60 Google Scholar
  11. Gillingham K, Nordhaus WD, Anthoff D, et al. (2015) Modeling uncertainty in climate. A Multi-Model Comparison. Natl Bur Econ Res Work Pap Ser, Paper No. 21637. doi:10.3386/w21637
  12. Grübler A, Johansson TB, Mundaca L, et al. (2012) Chapter 1 - Energy Primer. In: Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 99–150Google Scholar
  13. Hawksworth J (2006) The world in 2050: How big will the major emerging market economies get and how can the OECD compete? Pricewaterhouse Coopers, LondonGoogle Scholar
  14. IPCC (2014) Scenario Database of the 5th Assessment Report of Working Group III of the IPCC. Accessible at https://secure.iiasa.ac.at/web-apps/ene/AR5DB. See Krey et al., 2014b, Section 10, for a description of the database.
  15. Jiang K, Masui T, Morita T, Matsuoka Y (2000) Long-term GHG emission scenarios of Asia-Pacific and the world. Tech Forcasting Soc Change 61(2–3):207–229Google Scholar
  16. Krey V, Luderer G, Clarke L, Kriegler E (2014a) Getting from here to there – energy technology transformation pathways in the EMF27 scenarios. Clim Change 123:369–382. doi:10.1007/s10584-013-0947-5
  17. Krey V, Masera O, Blanford G, et al (2014b) Annex II: Metrics & Methodology. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, et al (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  18. Kriegler E, Petermann N, Krey V, et al (2015) Diagnostic indicators for integrated assessment models of climate policy. Technol Forecast Soc Change 90, Part A:45–61. doi:10.1016/j.techfore.2013.09.020
  19. Kriegler E, Weyant JP, Blanford GJ, et al. (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Change 123:353–367. doi:10.1007/s10584-013-0953-7
  20. Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010) Mitigation costs in a globalized world: climate policy analysis with REMIND-R. Environ Model Assess 15:155–173. doi:10.1007/s10666-009-9204-8
  21. Leimbach M, Kriegler E, Roming N, Schwanitz J (2016) Future growth patterns of world regions – A GDP scenario approach. Glob Environ Change. doi:10.1016/j.gloenvcha.2015.02.005
  22. Luderer G, Bertram C, Calvin K, et al (this issue) Implications of weak near-term climate policies on long-term mitigation pathways. Clim Change. doi:10.1007/s10584-013-0899-9
  23. Luderer G, Leimbach M, Bauer N, et al (2015) Description of the REMIND Model (Version 1.6) Available at SSRN: http://ssrn.com/abstract=2697070
  24. Luderer G, Pietzcker RC, Bertram C, et al. (2013) Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ Res Lett 8:34033. doi:10.1088/1748-9326/8/3/034033 CrossRefGoogle Scholar
  25. McJeon HC, Clarke L, Kyle P, et al. (2011) Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios? Energy Econ 33:619–631. doi:10.1016/j.eneco.2010.10.007
  26. Morita T, Nakicenovic N, Robinson J (2000) Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES). Environmental Economics and Policy Studies 3(2):65–88CrossRefGoogle Scholar
  27. Nakicenovic N, Alcamo J, Davis G, et al. (2000) Special report on emissions scenarios: A special report of Working Group III of the Intergovernmental Panel on climate. Cambridge University Press, Cambridge, UK, 570 ppGoogle Scholar
  28. Nordhaus WD, Boyer J (2000) Warming the world: Economic models of global warming, 2000. MIT Press, Cambridge, MAGoogle Scholar
  29. Northrop PJ, Chandler RE (2014) Quantifying sources of uncertainty in projections of future climate. J Clim 27:8793–8808CrossRefGoogle Scholar
  30. Paltsev S, Capros P (2013) Cost concepts for climate change mitigation. Climate Change Economics, 4(Supplement 1):1340003Google Scholar
  31. Pietzcker RC, Ueckerdt F, Luderer L (2015) Improving the representation of wind and solar variability in IAMs. Poster presented at the 8th Annual Meeting of the Integrated Assessment Modeling Consortium. Accessible at http://www.globalchange.umd.edu/iamc/wp-content/uploads/2016/01/IAMC-meeting-Report-2015_Annex3_Posters_final.pdf
  32. Riahi K, Dentener F, Gielen D, et al. (2012) Chapter 17: Energy Pathways for Sustainable development. In: Global Energy Assessment - Toward a Sustainable future. Cambridge University Press, Cambridge, UK, and New York, NY, USA, and the International Institute for Applied Systems Analysis, and Laxenburg, Austria, pp. 1203–1306Google Scholar
  33. Riahi K, van Vuuren D, Kriegler E, et al (2016) The Shared Socioeconomic Pathways: An Overview. Global Environmental ChangeGoogle Scholar
  34. Riahi K, Kriegler E, Johnson N, et al (2015) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc Change 90, Part A:8–23. doi:10.1016/j.techfore.2013.09.016
  35. Rogelj J, McCollum DL, O’Neill BC, et al. (2013b) 2020 emissions levels required to limit warming to below 2 °C. Nat Clim Chang 3:405–412. doi:10.1038/nclimate1758
  36. Rogelj J, McCollum DL, Riahi K (2013b) The UN’s “Sustainable energy for all” initiative is compatible with a warming limit of 2 [deg]C. Nat Clim Chang 3:545–551Google Scholar
  37. Rogner H-H, Aguilera RF, Archer CL, et al. (2012) Chapter 7: Energy Resources and Potentials. In: Zou J (ed) Global Energy Assessment - Toward a Sustainable future. Cambridge University Press, Cambridge, UK, and New York, NY, USA, and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 425–512Google Scholar
  38. Saltelli A, Ratto M, Andres T, et al. (2008) Global sensitivity analysis: the Primer. Wiley, New YorkGoogle Scholar
  39. United Nations, Department of Economic and Social Affairs, Population Division (2008). World Population Prospects: The 2008 Revision.Google Scholar
  40. UNFCCC (2015) Paris Agreement. United Nations Treaty Collection. Chapter XXVII Environment. TREATIES-XXVII.7d.Google Scholar
  41. Webster M, Sokolov A, Reilly J, et al. (2012) Analysis of climate policy targets under uncertainty. Clim Change 112:569–583CrossRefGoogle Scholar
  42. Weyant J, Davidson O, Dowlabathi H, et al. (1996) Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce JP, Lee H, Haites EF (eds) Climate Change 1995: Economic and Social Dimensions - Contribution of Working Group III to the Second Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 371-396Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Elmar Kriegler
    • 1
  • Ioanna Mouratiadou
    • 1
  • Gunnar Luderer
    • 1
  • Nico Bauer
    • 1
  • Robert J. Brecha
    • 1
    • 2
  • Katherine Calvin
    • 3
  • Enrica De Cian
    • 4
  • Jae Edmonds
    • 3
  • Kejun Jiang
    • 5
  • Massimo Tavoni
    • 4
  • Ottmar Edenhofer
    • 1
    • 6
    • 7
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.University of DaytonDaytonUSA
  3. 3.Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of MarylandCollege ParkUSA
  4. 4.Fondazione Eni Enrico Mattei (FEEM) and Euro-Mediterranen Center on Climate Change (CMCC)MilanItaly
  5. 5.Energy Research Institute, National Development and Reform CommissionBeijingChina
  6. 6.Technische Universität BerlinBerlinGermany
  7. 7.Mercator Research Institute on Global Commons and Climate ChangeBerlinGermany

Personalised recommendations