A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling

  • Miranda J. Fix
  • Daniel Cooley
  • Stephan R. Sain
  • Claudia Tebaldi
Article

Abstract

Precipitation extremes are expected to increase in a warming climate, which may have serious societal impacts. This study uses two initial condition ensembles conducted with the Community Earth System Model (CESM) to investigate potential changes in extreme precipitation under two climate change scenarios over the contiguous United States. We fit non-stationary generalized extreme value (GEV) models to annual maximum daily precipitation simulated from a 30-member ensemble under the RCP8.5 scenario and a 15-member ensemble under the RCP4.5 scenario. We then compare impacts using the 1 % annual exceedance probability (AEP) level, which is the amount of daily rainfall with only a 1 % chance of being exceeded in a given year. Under RCP8.5 between 2005 and 2080, the 1 % AEP level is projected to increase by 17 % on average across the U.S., and up to 36 % for some grid cells. Compared to RCP8.5 in the year 2080, RCP4.5 is projected to reduce the 1 % AEP level by 7 % on average, with reductions as large as 18 % for some grid cells. We also investigate a pattern scaling approach in which we produce predictive GEV distributions of annual precipitation maxima under RCP4.5 given only global mean temperatures for this scenario. We compare results from this less computationally intensive method to those obtained from our GEV model fitted directly to the CESM RCP4.5 output and find that pattern scaling produces reasonable projections.

Supplementary material

10584_2016_1656_MOESM1_ESM.pdf (775 kb)
(PDF 774 KB)

References

  1. Alexeeff S, Sain SR, Nychka D, Tebaldi C (in preparation) Patterns of mean temperature and variability across and within scenarios: using the RCP8.5 large ensemble to emulate RCP4.5Google Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232CrossRefGoogle Scholar
  3. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, et al. (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(1):71–95CrossRefGoogle Scholar
  4. Brown S J, Murphy J M, Sexton D M H, Harris G R (2014) Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases. Clim Dyn 43(9-10):2681–2705CrossRefGoogle Scholar
  5. Chen C-T, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Climate 21(7):1605–1621CrossRefGoogle Scholar
  6. Coles SG (2001) An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag London Ltd., London, p xiv+208. Springer Series in StatisticsCrossRefGoogle Scholar
  7. Cooley D, Sain SR (2010) Spatial hierarchical modeling of precipiation extremes from a regional climate model. J Agric Biol Environ Stat 15:381–402CrossRefGoogle Scholar
  8. Cooley D, Hsu K, Schubert S (2012) Return Periods Under Climate Change. In: AghaKouchak A, Easterling D, Sorooshian S (eds) Extremes in a Changing Climate: Detection, Analysis and Uncertainty. Water Science and Technology Series, Vol 65. Springer, Netherlands, Dordrecht, pp 97–114Google Scholar
  9. Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840CrossRefGoogle Scholar
  10. Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the climateprediction.net BBC Climate Change Experiment. Extremes 13(2):241–267CrossRefGoogle Scholar
  11. Fowler HJ, Ekström M, Blenkinsop S, Smith A P (2007) Estimating change in extreme European precipitation using a multimodel ensemble. In: Journal of Geophysical Research: Atmospheres, vol 112. Wiley Online LibraryGoogle Scholar
  12. Gilleland E, Katz RW (2011) New software to analyze how extremes change over time. Eos Trans AGU 92(2):13–14CrossRefGoogle Scholar
  13. Hanel M, Buishand TA (2011) Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin. Clim Dyn 36(5-6):1135–1153CrossRefGoogle Scholar
  14. Hosking JRM, Wallis J R (1997) Regional Frequency Analysis: An approach based on L-Moments. Cambridge, University Press, Cambridge., U.K.CrossRefGoogle Scholar
  15. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, et al. (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360CrossRefGoogle Scholar
  16. IPCC (2012). In: Field CB, Barros V, Stocker TF, D Qin, DJ Dokken, KL Ebi, MD Mastrandrea, KJ Mach, G-K Plattner, SK Allen, M Tignor, PM Midgley (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change, summary for policymakers. Cambridge University Press, Cambridge, UKGoogle Scholar
  17. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, et al. (2014) The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96 (8):1333–1349CrossRefGoogle Scholar
  18. Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18(8):1156–1173CrossRefGoogle Scholar
  19. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357CrossRefGoogle Scholar
  20. Kharin VV, Zwiers FW, Zhang XB, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444CrossRefGoogle Scholar
  21. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758CrossRefGoogle Scholar
  22. Leadbetter MR (1974) On Extreme Values in Stationary Processes. Z Wahrsch verw Gebiete 28(4):289–303CrossRefGoogle Scholar
  23. Maraun D, Osborn TJ, Rust HW (2011) The influence of synoptic airflow on UK daily precipitation extremes. Part I: Observed spatio-temporal relationships. Clim Dyn 36(1):261–275CrossRefGoogle Scholar
  24. O’Neill BC, Gettelman A (in preparation) Introduction to the special issueGoogle Scholar
  25. Pausader M, Bernie D, Parey S, Nogaj M (2012) Computing the distribution of return levels of extreme warm temperatures for future climate projections. Clim Dyn 38(5-6):1003–1015CrossRefGoogle Scholar
  26. Rootzén H, Katz RW (2013) Design Life Level: Quantifying risk in a changing climate. Water Resour Res 49(9):5964–5972CrossRefGoogle Scholar
  27. Sanderson BM, Oleson KW, Strand WG, Lehner F, O’Neill BC (2015) A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Clim Change:1–16. doi:10.1007/s10584-015-1567-z. Issn 1573–1480
  28. Sang H, Gelfand AE (2010) Continuous spatial process models for spatial extreme values. J Agric Biol Environ Stat 15(1):49–65CrossRefGoogle Scholar
  29. Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL (2016) Allowable CO2 emissions based on regional and impact-related climate targets. Nature. doi:10.1038/nature16542 Google Scholar
  30. Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Max-Plank Institut, HamburgGoogle Scholar
  31. Schliep EM, Cooley D, Sain SR, Hoeting JA (2010) A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. Extremes 13(2):219–239CrossRefGoogle Scholar
  32. Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24(22):5899–5913CrossRefGoogle Scholar
  33. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. American Meteorological Society. Bull Am Meteorol Soc 93 (4):485–498CrossRefGoogle Scholar
  34. Tebaldi C, Arblaster JM (2014) Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Clim Change 122(3):459–471CrossRefGoogle Scholar
  35. Tye MR, Cooley D (2015) A spatial model to examine rainfall extremes in Colorado’s Front Range. J Hydrol 530:15–23CrossRefGoogle Scholar
  36. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, et al. (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  37. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918CrossRefGoogle Scholar
  38. Wilks DS (2006) Statistical methods in the atmospheric sciences: an introduction, 2nd. Academic Press, San DiegoGoogle Scholar
  39. Wehner MF (2013) Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim Dyn 40(1-2):59–80CrossRefGoogle Scholar
  40. Zhang X, Zwiers FW, Li G (2004) Monte carlo experiments on the detection of trends in extreme values. J Clim 17(10):1945–1952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Miranda J. Fix
    • 1
  • Daniel Cooley
    • 1
  • Stephan R. Sain
    • 2
  • Claudia Tebaldi
    • 3
  1. 1.Department of StatisticsColorado State UniversityFort CollinsUSA
  2. 2.The Climate CorporationSan FranciscoUSA
  3. 3.Climate and Global Dynamics LaboratoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations