Climatic Change

, Volume 146, Issue 3–4, pp 303–318 | Cite as

A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario

  • Benjamin M. SandersonEmail author
  • Keith W. Oleson
  • Warren G. Strand
  • Flavio Lehner
  • Brian C. O’Neill


There is growing evidence that the role internal variability plays in our confidence in future climate projections has been under-appreciated in past assessments of model projections for the coming decades. In light of this, a 15 member ensemble has been produced to complement the existing 30 member “Large Ensemble” conducted with the Community Earth System Model (CESM). In contrast to the Large Ensemble, which explored the variability in RCP8.5, our new ensemble uses the moderate mitigation scenario represented by RCP4.5. By comparing outputs from these two ensembles, we assess at what point in the future the climates conditioned on the two scenarios will begin to significantly diverge. We find in general that while internal variability is a significant component of uncertainty for periods before 2050, there is evidence of a significantly increased risk of extreme warm events in some regions as early as 2030 in RCP8.5 relative to RCP4.5. Furthermore, the period 2061-2080 sees largely separate joint distributions of annual mean temperature and precipitation in most regions for the two ensembles. Hence, in the CESM’s representation of the Earth System for the latter portion of the 21st century, the range of climatic states which might be expected in the RCP8.5 scenario is significantly and detectably further removed from today’s climate state than the RCP4.5 scenario even in the presence of internal variability.



Portions of this study were supported by the Office of Science (BER), US Department of Energy, Cooperative Agreement No DE-FC02-97ER62402. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Supplementary material

10584_2015_1567_MOESM1_ESM.pdf (130 kb)
(PDF 130 KB)


  1. Anderson GB, Oleson K, Jones B, Peng RD (in review) Climatic ChangeGoogle Scholar
  2. Arnell NW, Lowe J, Brown S, Gosling S, Gottschalk P, Hinkel J, Lloyd-Hughes B, Nicholls R, Osborn T, Osborne TM, et al. (2013) Nat Clim Chang 3(5):512CrossRefGoogle Scholar
  3. Branstator G, Teng H, Meehl GA, Kimoto M, Knight JR, Latif M, Rosati A (2012) J Clim 25(6):1827CrossRefGoogle Scholar
  4. Caesar J, Lowe JA (2012) J Geophys Res Atmos 117(D15):1984–2012CrossRefGoogle Scholar
  5. Change C (2014) Cambridge, United Kingdom and New York, USAGoogle Scholar
  6. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) US Government Printing Office, Washington DCGoogle Scholar
  7. Deser C, Phillips A, Bourdette V, Teng H (2012) Clim Dyn 38(3-4):527CrossRefGoogle Scholar
  8. Fischer E, Beyerle U, Knutti R (2013) Nat Clim Chang 3(12):1033CrossRefGoogle Scholar
  9. Giorgi F, Francisco R (2000) Clim Dynam 16(2-3):169CrossRefGoogle Scholar
  10. Hansen J, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt G, Russell G, et al. (2007) Atmos Chem Phys 7(9):2287CrossRefGoogle Scholar
  11. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner P, Lamarque JF, Large WG, Lawrence D, Lindsay K, et al. (2013) Bull Am Meteorol Soc 94(9):1339CrossRefGoogle Scholar
  12. Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, et al. (2014) Bull Am Meteorol SocGoogle Scholar
  13. Lehner F, Deser C, Sanderson B (submitted) Climatic ChangeGoogle Scholar
  14. Lin L, Gettelman A, Fu Q, Xu Y (submitted) Climatic ChangeGoogle Scholar
  15. Lombardozzi D, Bonan GB, Nychka DW (2014) Nat Clim Chang 4(9):796CrossRefGoogle Scholar
  16. Lorenz EN (1969) Tellus 21(3):289. doi: 10.1111/j.2153-3490.1969.tb00444.x CrossRefGoogle Scholar
  17. Mahlstein I, Knutti R, Solomon S, Portmann R (2011) Environ Res Lett 6(3):034009CrossRefGoogle Scholar
  18. Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla P, Yamagata Y, Kainuma M (2011) Climatic Change 109(1–2):59CrossRefGoogle Scholar
  19. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) J Clim 26 (17):6287CrossRefGoogle Scholar
  20. Messner S, Schrattenholzer L (2000) Energy 25(3):267CrossRefGoogle Scholar
  21. Oleson K, Anderson G, Jones B, McGinnis S, Sanderson B (2015) Avoided climate impacts of urban and rural heat and cold waves over the US using large climate model ensembles for RCP8.5 and RCP4.5. Climatic Change. doi: 10.1007/s10584-015-1504-1
  22. O’Neill B, Gettelman A (in preparation)Google Scholar
  23. Perkins SE, Fischer EM (2013) Geophys Res Lett 40(21):5793. doi: 10.1002/2013GL057833 CrossRefGoogle Scholar
  24. Riahi K, Grübler A, Nakicenovic N (2007) Technol Forecast Soc Chang 74(7):887CrossRefGoogle Scholar
  25. Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-8.5: exploring the consequence of high emission trajectories. Climatic ChangeGoogle Scholar
  26. Royston P (1992) Stata Tech Bull 1(3)Google Scholar
  27. Sanderson BM, Knutti R, Caldwell P (2015) A representative democracy to reduce interdependency in a multi-model ensemble. J Clim. doi: 10.1175/JCLI-D-14-00362.1
  28. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Nat Clim Chang 5(2):86CrossRefGoogle Scholar
  29. Taylor KE, Stouffer RJ, Meehl GA (2012) Bull Am Meteorol Soc 93(4):485CrossRefGoogle Scholar
  30. Tebaldi C, Friedlingstein P (2013) Proc Natl Acad Sci 110(43):17229CrossRefGoogle Scholar
  31. Tebaldi C, ONeill B, Lamarque JF (2015) Environ Res Lett 10(7):074001CrossRefGoogle Scholar
  32. Tebaldi C, Wehner M (in review) Climatic ChangeGoogle Scholar
  33. The CESM Medium Ensemble doi: 10.5072/FK22Z1547Z. Available on
  34. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, et al. (2011) Climatic Change 109(1–2):77CrossRefGoogle Scholar
  35. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, et al. (2011) Climatic Change 109:5CrossRefGoogle Scholar
  36. Van Vuuren DP, Stehfest E, den Elzen MG, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM, et al. (2011) Climatic Change 109(1-2):95CrossRefGoogle Scholar
  37. Washington WM, Knutti R, Meehl GA, Teng H, Tebaldi C, Lawrence D, Buja L, Strand WG (2009) Geophys Res Lett 36(8)Google Scholar
  38. Xu Y, Lamarque JF, Sanderson BM (2015) The importance of aerosol scenarios in projections of future heat extremes. Climatic Change (in press)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Benjamin M. Sanderson
    • 1
    Email author
  • Keith W. Oleson
    • 1
  • Warren G. Strand
    • 1
  • Flavio Lehner
    • 1
  • Brian C. O’Neill
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations