Climatic Change

, Volume 134, Issue 1–2, pp 1–14 | Cite as

Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth

  • Clifford ChuwahEmail author
  • Twan van Noije
  • Detlef P. van Vuuren
  • Philippe Le Sager
  • Wilco Hazeleger


Future changes in aerosol concentrations will influence the climate system over the coming decades. In this study we evaluate the equilibrium climate response to aerosol reductions in different parts of the world in 2050, using the global climate model EC-Earth. The aerosol concentrations are based on a set of scenarios similar to RCP6.0, developed using the IMAGE integrated assessment model and exploring stringent and weaker air pollution control. Reductions in aerosol concentrations lead to an increase in downward surface solar radiation under all-sky conditions in various parts of the world, especially in Asia where the local brightening may reach about 10 Wm−2. The associated increase in surface temperature may be as high as 0.5 °C. This signal is dominated by the reduced cooling effect of sulphate which in some areas is partially compensated by the decreased warming effect of black carbon. According to our simulations, the mitigation of BC may lead to decreases in mean summer surface temperature of up to 1 °C in central parts of North America and up to 0.3 °C in northern India. Aerosol reductions could significantly affect the climate at high latitudes especially in the winter, where temperature increases of up to 1 °C are simulated. In the Northern Hemisphere, this strong surface temperature response might be related to changes in circulation patterns and precipitation at low latitudes, which can give rise to a wave train and induce changes in weather patterns at high latitudes. Our model does not include a parameterization of aerosol indirect effects so that responses could be stronger in reality. We conclude that different, but plausible, air pollution control policies can have substantial local climate effects and induce remote responses through dynamic teleconnections.


Black Carbon Aerosol Concentration Solar Radiation Management High Scenario Rossby Wave Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of the research programme ‘Feedbacks in the climate system’, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors wish to thank Dr. G.J. van Oldenborgh (KNMI) for advise on the statistical analysis of their simulations.

Supplementary material

10584_2015_1525_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2099 kb)


  1. Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the climate model intercomparison project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116, D20206. doi: 10.1029/2011JD016074 CrossRefGoogle Scholar
  2. Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:1–173Google Scholar
  3. Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols climate change 2013: the physical science basis, edited by Stocker TF et al pp. 571–657, Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  4. Bouwman AF, Kram T, Klein Goldewijk K (2006) Integrated modelling of global environmental change an overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), BilthovenGoogle Scholar
  5. Chalmers N, Highwood EJ, Hawkins E, Sutton RT, Wilcox LJ (2012) Aerosol contribution to the rapid warming of near-term climate under RCP2.6. Geophys Res Lett 39, L18709. doi: 10.1029/2012GL052848 CrossRefGoogle Scholar
  6. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Perturbation of the northern hemispheric radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43AB:152–163Google Scholar
  7. Chuwah CD, van Noije T, van Vuuren DP, Hazeleger W, Strunk A, Deetman S, Mendoza Beltran A, van Vliet J (2013) Implications of alternative assumptions regarding future air pollution control in scenarios similar to the representative concentration pathways. Atmos Environ 79:787–801CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system Q. J Roy Meteor Soc 137:553–597CrossRefGoogle Scholar
  9. Gillett NP, Von Salzen K (2013) The role of reduced aerosol precursor emissions in driving near-term warming. Environ Res Lett 8:034008CrossRefGoogle Scholar
  10. Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966CrossRefGoogle Scholar
  11. Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcing. J Geophys Res 110, D18104. doi: 10.1029/2005JD005776 CrossRefGoogle Scholar
  12. Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface climate change 2013. In: Stocker TF et al (eds) The physical science basis. Cambridge Univ. Press, Cambridge, pp 159–254Google Scholar
  13. Hazeleger W, Wang X, Severijns C et al (2012) EC-Earth V2.2: description and validation of a new seamless Earth system prediction model. Clim Dyn 39:2611–2629CrossRefGoogle Scholar
  14. Hoskins BJ, Karoly DJ (1981) The steady linear responses of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  15. Kiehl JT, Briegleb BP (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260:311–314CrossRefGoogle Scholar
  16. Kim D, Wang C, Ekman AML, Barth MC, Lee D-I (2014) The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols. J Geophys Res 119:1172–1185CrossRefGoogle Scholar
  17. Kloster S, Dentener F, Feichter J, Raes F, Lohmann U, Roeckner E, Fischer-Bruns I (2010) A GCM study of future climate response to aerosol pollution reductions. Clim Dyn 34:1177–1194CrossRefGoogle Scholar
  18. Lamarque J-F, Bond TC, Eyring V et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039CrossRefGoogle Scholar
  19. Levy H, Horowitz L, Schwarzkopf M, Ming Y, Golaz J, Naik V, Ramaswamy V (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res 118:4521–4532Google Scholar
  20. Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, France, No. 27 ISSN No. 1288–1619Google Scholar
  21. Masui T, Matsumoto K, Hijoka Y et al (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Chang 109:59–76CrossRefGoogle Scholar
  22. Mickley LJ, Leibensperger EM, Jacob DJ, Rind D (2012) Regional warming from aerosol removal over the United States: results from a transient 2010–2050 climate simulation. Atmos Environ 46:545–553CrossRefGoogle Scholar
  23. Mitchell JFB, Johns TJ, Gregory JM, Tett SFB (1995) Transient climate response to increasing sulphate aerosols and greenhouse gases. Nature 376:501–504CrossRefGoogle Scholar
  24. Niemeier U, Schmidt H, Alterskjær K, Kristjánsson JE (2013) Solar irradiance reduction via climate engineering--impact of different techniques on the energy balance and the hydrological cycle. J Geophys Res 118:11905–11917Google Scholar
  25. Persad GG, Ming Y, Ramaswamy V (2012) Tropical tropospheric-only responses to absorbing aerosols. J Clim 25:2471–2480CrossRefGoogle Scholar
  26. Rotstayn L, Collier M, Chrastansky A, Jeffrey S, Luo J (2013) Projected effects of declining aerosols in RCP4.5: unmasking global warming? Atmos Chem Phys 13:10883–10905CrossRefGoogle Scholar
  27. Rotstayn LD, Plymin EL, Collier MA et al (2014) Declining aerosols in CMIP5 projections: effects on atmospheric temperature structure and midlatitude jets. J Clim 27:6960–6977CrossRefGoogle Scholar
  28. Sand M, Berntsen TK, Seland Ø, Kristjánsson JE (2013) Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes. J Geophys Res 118:7788–7798Google Scholar
  29. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337CrossRefGoogle Scholar
  30. Shindell D (2007) Local and remote contributions to Arctic warming. Geophys Res Lett 34, L14704. doi: 10.1029/2007GL030221 CrossRefGoogle Scholar
  31. Shindell DT, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300CrossRefGoogle Scholar
  32. Shindell D, Schulz M, Ming Y, Takemura T, Faluvegi G, Ramaswamy V (2010) Spatial scales of climate response to inhomogeneous radiative forcing. J Geophys Res 115, D19110. doi: 10.1029/2010JD014108 CrossRefGoogle Scholar
  33. Shindell D, Lamarque J-F, Schulz M et al (2013) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys 13:2939–2974CrossRefGoogle Scholar
  34. Sillmann J, Pozzoli L, Vignati E, Kloster S, Feichter J (2013) Aerosol effect on climate extremes in Europe under different future scenarios. Geophys Res Lett 40:2290–2295CrossRefGoogle Scholar
  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  36. Teng H, Washington WM, Branstator G, Meehl GA, Lamarque J-F (2012) Potential impacts of Asian carbon aerosols on future US warming. Geophys Res Lett 39, L11703. doi: 10.1029/2012GL051723 CrossRefGoogle Scholar
  37. Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) In: climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, pp 235–336Google Scholar
  38. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388CrossRefGoogle Scholar
  39. Van Oldenborgh GJ, Drijfhout S, van Ulden A et al (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12CrossRefGoogle Scholar
  40. Van Vuuren DP, Edmonds J, Kainuma M (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  41. Wild M, Gilgen H, Roesch A et al (2005) From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 308:847–850CrossRefGoogle Scholar
  42. Yang Q, Bitz CM, Doherty SJ (2014) Offsetting effects of aerosols on Arctic and global climate in the late 20th century. Atmos Chem Phys 14:3969–3975CrossRefGoogle Scholar
  43. Yoshimori M, Broccoli AJ (2008) Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: global and zonal mean response. J Clim 21:4399–4423CrossRefGoogle Scholar
  44. Yuan X, Martinson DG (2000) Antarctic sea ice extent variability and its global connectivity. J Clim 13:1697–1717CrossRefGoogle Scholar
  45. Zappa G, Shaffrey LC, Hodges KI, Sansom PG,  Stephenson DB (2013)  A multi-model assessment of future projections of north Atlantic and European extratropical cyclones in the cmip5 climate models. J Clim 26:5846–5862Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Clifford Chuwah
    • 1
    • 2
    • 3
    Email author
  • Twan van Noije
    • 1
  • Detlef P. van Vuuren
    • 2
    • 4
  • Philippe Le Sager
    • 1
  • Wilco Hazeleger
    • 1
    • 3
    • 5
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Netherlands Environmental Assessment Agency (PBL)BilthovenThe Netherlands
  3. 3.Wageningen UniversityWageningenThe Netherlands
  4. 4.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
  5. 5.Netherlands eScience CenterAmsterdamThe Netherlands

Personalised recommendations