Climatic Change

, Volume 133, Issue 2, pp 141–154 | Cite as

The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph

  • Rosemarie McMahon
  • Michael Stauffacher
  • Reto Knutti


The reports published by the Intergovernmental Panel on Climate Change (IPCC) are comprehensive assessments of the scientific knowledge and uncertainties surrounding climate projections. They combine well-formed language with supporting graphical evidence and have the objective to inform policymakers. One of the most discussed and widely distributed visual in these reports is the graph, showing the global surface temperature evolution for the 21st century as simulated by climate models for various emission scenarios, which is part of the Summary for Policymakers (SPM) and the Working Group I contribution to the Fourth Assessment Report (AR4). It displays two types of uncertainties, namely the socio-economic scenarios and response uncertainty due to imperfect knowledge and models. Through 43 in-depth interviews this graph and caption was empirically tested with a sample of people analogous to the SPM target audience. It was found that novice readers were unable to identify the two different types of uncertainties in this graph without substantial guidance. Instead they saw a great deal of uncertainty but falsely attributed it to the climate model(s) and ignored the scenario uncertainties. Our findings demonstrate how the choice of display can directly impact a reader’s perception of the scientific message. A failure to distinguish between these two types of uncertainties could lead to an overestimate of the response uncertainties, and an underestimation of socio-economic choices. We test this assumption and identify the difficulties non-technical audiences have with this graph and how this could inevitably impede its value as a decision support tool.

Supplementary material

10584_2015_1473_MOESM1_ESM.docx (43 kb)
ESM 1(DOCX 43 kb)
10584_2015_1473_MOESM2_ESM.docx (140 kb)
ESM 2(DOCX 140 kb)
10584_2015_1473_MOESM3_ESM.docx (145 kb)
ESM 3(DOCX 144 kb)
10584_2015_1473_MOESM4_ESM.docx (166 kb)
ESM 4(DOCX 165 kb)
10584_2015_1473_MOESM5_ESM.docx (109 kb)
ESM 5(DOCX 108 kb)


  1. Ancker JS, Senathirajah Y, Kukafka R, Starren JB (2006) Design features of graphs in health risk communication: a systematic review. J Am Med Inform Assoc 13:608–618. doi:10.1197/Jamia.M2115 CrossRefGoogle Scholar
  2. Bertin J (2010) [Semiologie graphique. English] Semiology of graphics: diagrams, networks, maps / Jacques Bertin; translated by William J. Berg. 1 edn. Esri PressGoogle Scholar
  3. Boukhelifa N, Bezerianos A, Isenberg T, Fekete JD (2012) Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans Vis Comp Graph 18:2769–2778CrossRefGoogle Scholar
  4. Budescu DV, Broomell S, Por HH (2009) Improving communication of uncertainty in the reports of the intergovernmental panel on climate change. Psychol Sci 20:299–308. doi:10.1111/J.1467-9280.2009.02284.X CrossRefGoogle Scholar
  5. Canham M, Hegarty M (2010) Effects of knowledge and display design on comprehension of complex graphics. Learn Instr 20:155–166. doi:10.1016/J.Learninstruc.2009.02.014 CrossRefGoogle Scholar
  6. CCSP (2009) Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. [M. Granger Morgan (Lead Author), Hadi Dowlatabadi, Max Henrion, David Keith, Robert Lempert, Sandra McBride, Mitchell Small, and Thomas Wilbanks (Contributing Authors)]Google Scholar
  7. Cleveland WS, Mcgill R (1985) Graphical perception and graphical methods for analyzing scientific-data. Science 229:828–833. doi:10.1126/Science.229.4716.828 CrossRefGoogle Scholar
  8. Fischhoff B (2011) Applying the science of communication to the communication of science. Clim Chang 108:701–705. doi:10.1007/S10584-011-0183-9 CrossRefGoogle Scholar
  9. Fischhoff B (2013) The sciences of science communication. Proc Natl Acad Sci U S A 110:14033–14039. doi:10.1073/Pnas.1213273110 CrossRefGoogle Scholar
  10. Garcia-Retamero R, Okan Y, Cokely ET (2012) Using visual aids to improve communication of risks about health: a review Sci World J doi: Artn 562637Google Scholar
  11. Glazer N (2011) Challenges with graph interpretation: a review of the literature. Stud Sci Educ 47:183–210. doi:10.1080/03057267.2011.605307 CrossRefGoogle Scholar
  12. Guzman E, Schiller J (2011) How does this look? In: C Stephanidis (Ed) Desirability methods for evaluating visual design. Posters, Part I, HCII 2011, CCIS 173, Springer-Verlag Berlin Heidelberg, pp 123–127Google Scholar
  13. Hegarty M (2011) The cognitive science of visual-spatial displays: implications for design. Top Cogn Sci 3:446–474. doi:10.1111/J.1756-8765.2011.01150.X CrossRefGoogle Scholar
  14. Hegarty M, Canham MS, Fabrikant SI (2010) Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J Exp Psychol Learn Mem Cogn 36:37–53. doi:10.1037/A0017683 CrossRefGoogle Scholar
  15. IPCC (2013) Working goup 1 fact sheet. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. Accessed 10 January 2015
  16. Jonassen R, Pielke R (2011) Improving conveyance of uncertainties in the findings of the IPCC. Clim Chang 108:745–753. doi:10.1007/S10584-011-0185-7 CrossRefGoogle Scholar
  17. Kandlikar M, Risbey J, Dessai S (2005) Representing and communicating deep uncertainty in climate-change assessments. CR Geosci 337:443–455. doi:10.1016/J.Crte.2004.10.010 CrossRefGoogle Scholar
  18. Kinkeldey C, MacEachren AM, Schiewe J (2014) How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. Cartogr J 51:372–386. doi:10.1179/1743277414y.0000000099 CrossRefGoogle Scholar
  19. Kosslyn SM (1989) Understanding charts and graphs. Appl Cogn Psychol 3:185–226. doi:10.1002/Acp.2350030302 CrossRefGoogle Scholar
  20. Mason M (2010) Sample size and saturation in PhD studies using qualitative interviews [63 paragraphs] Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 11(3), Art. 8Google Scholar
  21. Mastrandrea MD et al (2011) The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim Chang 108:675–691. doi:10.1007/S10584-011-0178-6 CrossRefGoogle Scholar
  22. Morgan MG, Mellon C (2011) Certainty, uncertainty, and climate change. Clim Chang 108:707–721. doi:10.1007/S10584-011-0184-8 CrossRefGoogle Scholar
  23. Moser SC (2010) Communicating climate change: history, challenges, process and future directions. WIREs Clim Chang 1:31–53. doi:10.1002/Wcc.011 CrossRefGoogle Scholar
  24. Moss RH (2011) Reducing doubt about uncertainty: guidance for IPCC's third assessment. Clim Chang 108:641–658. doi:10.1007/S10584-011-0182-X CrossRefGoogle Scholar
  25. O'Neill SJ, Smith N (2014) Climate change and visual imagery. WIREs Clim Chang 5:73–87. doi:10.1002/Wcc.249 CrossRefGoogle Scholar
  26. Patt AG, Weber EU (2014) Perceptions and communication strategies for the many uncertainties relevant for climate policy. WIREs Clim Chang 5:219–232. doi:10.1002/Wcc.259 CrossRefGoogle Scholar
  27. Pidgeon N, Fischhoff B (2011) The role of social and decision sciences in communicating uncertain climate risks. Nat Clim Chang 1:35–41. doi:10.1038/Nclimate1080 CrossRefGoogle Scholar
  28. Rabinovich A, Morton TA (2012) Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication. Risk Anal 32:992–1002. doi:10.1111/J.1539-6924.2012.01771.X CrossRefGoogle Scholar
  29. Schneider B (2012) Climate model simulation visualization from a visual studies perspective. WIREs Clim Chang 3:185–193. doi:10.1002/Wcc.162 CrossRefGoogle Scholar
  30. Shah P, Hoeffner J (2002) Review of graph comprehension research: implications for instruction. Educ Psychol Rev 14:47–69. doi:10.1023/A:1013180410169 CrossRefGoogle Scholar
  31. Shah P, Mayer RE, Hegarty M (1999) Graphs as aids to knowledge construction: signaling techniques for guiding the process of graph comprehension. J Educ Psychol 91:690–702. doi:10.1037//0022-0663.91.4.690 CrossRefGoogle Scholar
  32. Stephens EM, Edwards TL, Demeritt D (2012) Communicating probabilistic information from climate model ensembles-lessons from numerical weather prediction. WIREs Clim Chang 3:409–426. doi:10.1002/Wcc.187 CrossRefGoogle Scholar
  33. Tufte ER (2001) The visual display of quantitative information. 2 edn. Graphics Press LLCGoogle Scholar
  34. von Winterfeldt D (2013) Bridging the gap between science and decision making. Proc Natl Acad Sci U S A 110:14055–14061. doi:10.1073/Pnas.1213532110 CrossRefGoogle Scholar
  35. Yohe G, Oppenheimer M (2011) Evaluation, characterization, and communication of uncertainty by the intergovernmental panel on climate change-an introductory essay. Clim Chang 108:629–639. doi:10.1007/S10584-011-0176-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rosemarie McMahon
    • 1
  • Michael Stauffacher
    • 2
  • Reto Knutti
    • 1
  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  2. 2.Institute for Environmental DecisionsETH ZurichZurichSwitzerland

Personalised recommendations