Climatic Change

, Volume 133, Issue 2, pp 179–192 | Cite as

A global assessment of the carbon cycle and temperature responses to major changes in future fire regime

  • Jean-Sébastien Landry
  • H. Damon Matthews
  • Navin Ramankutty
Article

Abstract

Changes in the current fire regime would directly affect carbon cycling, land–atmosphere exchanges, and atmospheric composition, and could therefore modulate the ongoing climate warming. We used a coupled climate–carbon model to quantify the effect of major changes in non-deforestation fires on the global carbon cycle and temperature, from 2015 to 2300. When considering only CO2 fire emissions, the impacts from changes in fire frequency were limited for the global carbon cycle, and almost negligible for the global atmospheric surface temperature. The net fire emissions were only a fraction of the CO2 directly emitted during combustion due to vegetation regrowth and climate–CO2 feedbacks, and the albedo increases caused by changes in vegetation cover countered the effect of increased atmospheric CO2 on global temperature. When employing a simplified approach based on global-mean radiative forcings in order to estimate the impact of non-CO2 fire emissions, the effect of increased fire frequency on global temperature depended critically on the uncertain net aerosol forcing. Despite this major uncertainty, our results overall do not support the hypothesis of a strong positive climate–fire feedback for the coming centuries.

Supplementary material

10584_2015_1461_MOESM1_ESM.pdf (383 kb)
(PDF 383 KB)

References

  1. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966CrossRefGoogle Scholar
  2. Balshi MS, McGuire AD, Duffy P, Flannigan MD, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biol 15:1491–1510CrossRefGoogle Scholar
  3. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–537CrossRefGoogle Scholar
  4. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013). In: Stocker TF et al. (eds) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, pp 571–658Google Scholar
  5. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484CrossRefGoogle Scholar
  6. Bowman DMJS, O’Brien JA, Goldammer JG (2013) Pyrogeography and the global quest for sustainable fire management. Annu Rev Environ Resour 38:57–80CrossRefGoogle Scholar
  7. Cox PM (2001) Description of the “TRIFFID” Dynamic Global Vegetation Model. Hadley Centre technical note 24, p 16Google Scholar
  8. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J Clim 22:2501–2511CrossRefGoogle Scholar
  9. Ewen TL, Weaver AJ, Eby M (2004) Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model. Atmosphere-Ocean 42:23–42CrossRefGoogle Scholar
  10. Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour 32:1–29CrossRefGoogle Scholar
  11. Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res 118:317–328CrossRefGoogle Scholar
  12. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104CrossRefGoogle Scholar
  13. Jacobson MZ (2004) The short-term cooling but long-term global warming due to biomass burning. J Clim 17:2909–2926CrossRefGoogle Scholar
  14. Jacobson MZ (2014) Effect of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos 119:8980–9002CrossRefGoogle Scholar
  15. Jones A, Haywood JM, Boucher O (2007) Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J Geophys Res 112:D20211CrossRefGoogle Scholar
  16. Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, von Bloh W, Brovkin V, Burke EJ, Eby M, Edwards NR, Friedrich T, Frölicher TL, Halloran PR, Holden PB, Jones C, Kleinen T, Mackenzie FT, Matsumoto K, Meinshausen M, Plattner GK, Reisinger A, Segschneider J, Shaffer G, Steinacher M, Strassmann K, Tanaka K, Timmermann A, Weaver AJ (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825CrossRefGoogle Scholar
  17. Kloster S, Mahowald NM, Randerson JT, Lawrence PJ (2012) The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 9:509–525CrossRefGoogle Scholar
  18. Kurz WA, Apps MJ, Stocks BJ, Volney WJA (1995) In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, New York, pp 119–133Google Scholar
  19. Li F, Bond-Lamberty B, Levis S (2014) Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences 11 :1345–1360CrossRefGoogle Scholar
  20. Matthews HD (2007) Implications of CO2 fertilization for future climate change in a coupled climate–carbon model. Global Change Biol 13:1068–1078CrossRefGoogle Scholar
  21. Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479CrossRefGoogle Scholar
  22. Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 21:515–537CrossRefGoogle Scholar
  23. Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque JF, Grégoire JM, Pétron G (2010) Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477CrossRefGoogle Scholar
  24. Moritz MA, Parisien MA, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruption to global fire activity. Ecosphere 3:49CrossRefGoogle Scholar
  25. Myhre G, Shindell D, Bréon FM, Collins W, J F, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) In: Stocker TF et al. (eds) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, pp 659–740Google Scholar
  26. O’Halloran TL, Law BE, Goulden ML, Wang Z, Barr JG, Schaaf C, Brown M, Fuentes JD, Göckede M, Black A, Engel V (2012) Radiative forcing of natural forest disturbances. Global Change Biol 18:555–565CrossRefGoogle Scholar
  27. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170CrossRefGoogle Scholar
  28. Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjánsson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevåg A, Iversen T, Seland O, Easter R, Ghan SJ, Rasch PJ, Morrison H, Lamarque JF, Iacono MJ, Kinne S, Schulz M (2009) Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717CrossRefGoogle Scholar
  29. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132CrossRefGoogle Scholar
  30. Running SW (2008) Ecosystem disturbance, carbon, and climate. Science 321:652–653CrossRefGoogle Scholar
  31. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cycles 22:GB1013CrossRefGoogle Scholar
  32. Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–13120CrossRefGoogle Scholar
  33. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58:701–714CrossRefGoogle Scholar
  34. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247CrossRefGoogle Scholar
  35. Spracklen DV, Rap A (2013) Natural aerosol-climate feedbacks suppressed by anthropogenic aerosol. Geophys Res Lett 40:5316–5319CrossRefGoogle Scholar
  36. Ten Hoeve JE, Jacobson MZ, Remer LA (2012) Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J Geophys Res 117:D08203Google Scholar
  37. Tosca MG, Randerson JT, Zender CS (2013) Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos Chem Phys 13:5227–5241CrossRefGoogle Scholar
  38. Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14CrossRefGoogle Scholar
  39. Unger N, Bond TC, Wang JS, Koch DM, Menon S, Shindell DT, Bauer S (2010) Attribution of climate forcing to economic sectors. Proc Natl Acad Sci USA 107:3382–3387CrossRefGoogle Scholar
  40. van der Werf GR, Randerson JT, Collatz GJ, Giglio L (2003) Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biol 9:547–562CrossRefGoogle Scholar
  41. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735CrossRefGoogle Scholar
  42. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  43. Ward DS, Kloster S, Mahowald NM, Rogers BM, Randerson JT, Hess PG (2012) The changing radiative forcing of fires: global model estimates for past, present and future. Atmos Chem Phys 12:10857–10886CrossRefGoogle Scholar
  44. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean 39:361–428CrossRefGoogle Scholar
  45. Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E, Edwards NR, Eliseev AV, Feulner G, Fichefet T, Forest CE, Friedlingstein P, Goosse H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider Von Deimling T, Shaffer G, Sokolov A, Spahni R, Steinacher M, Tachiiri K, Tokos KS, Yoshimori M, Zeng N, Zhao F (2013) Long-term climate change commitment and reversibility: An EMIC intercomparison. J Clim 26:5782–5809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jean-Sébastien Landry
    • 1
  • H. Damon Matthews
    • 2
  • Navin Ramankutty
    • 1
    • 3
  1. 1.Department of Geography and Global Environmental and Climate Change CentreMcGill UniversityMontréalCanada
  2. 2.Department of Geography, Planning and EnvironmentConcordia UniversityMontréalCanada
  3. 3.Liu Institute for Global Issues and Institute for Resources, Environment, and SustainabilityUniversity of British ColumbiaVancouverCanada

Personalised recommendations