Climatic Change

, Volume 132, Issue 4, pp 693–707 | Cite as

Past and future sea-level rise along the coast of North Carolina, USA

  • Robert E. Kopp
  • Benjamin P. Horton
  • Andrew C. Kemp
  • Claudia Tebaldi


We evaluate relative sea level (RSL) trajectories for North Carolina, USA, in the context of tide-gauge measurements and geological sea-level reconstructions spanning the last ~11,000 years. RSL rise was fastest (~7 mm/yr) during the early Holocene and slowed over time with the end of the deglaciation. During the pre-Industrial Common Era (i.e., 0–1800 CE), RSL rise (~0.7 to 1.1 mm/yr) was driven primarily by glacio-isostatic adjustment, though dampened by tectonic uplift along the Cape Fear Arch. Ocean/atmosphere dynamics caused centennial variability of up to ~0.6 mm/yr around the long-term rate. It is extremely likely (probability P=0.95) that 20th century RSL rise at Sand Point, NC, (2.8 ± 0.5 mm/yr) was faster than during any other century in at least 2,900 years. Projections based on a fusion of process models, statistical models, expert elicitation, and expert assessment indicate that RSL at Wilmington, NC, is very likely (P=0.90) to rise by 42–132 cm between 2000 and 2100 under the high-emissions RCP 8.5 pathway. Under all emission pathways, 21st century RSL rise is very likely (P>0.90) to be faster than during the 20th century. Due to RSL rise, under RCP 8.5, the current ‘1-in-100 year’ flood is expected at Wilmington in ~30 of the 50 years between 2050-2100.


Gulf Stream North Carolina Sand Point Mean High High Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the American Climate Prospectus research team for assisting with the development of the sea-level rise projections, E.Morrow for retrieving the CESM ocean dynamic sea-level change from the CMIP5 archive, C. Zervas for assistance with the NC tide-gauge data, and C. Hay for helpful comments. Funding was provided by the Risky Business Project, National Science Foundation awards EAR 1052848, EAR 1402017, OCE 1458904 and ARC 1203415, National Oceanic & Atmospheric Administration grant NA11OAR4310101, and New Jersey Sea Grant project 6410-0012. C. Tebaldi is supported by the Regional and Global Climate Modeling Program of the U.S. Department of Energy’s, Office of Science (BER), Cooperative Agreement DE-FC02-97ER62402. This paper is a contribution to International Geoscience Program project 588 ‘Preparing for coastal change’ and the PALSEA2 (Palaeo-Constraints on Sea-Level Rise) project of Past Global Changes/IMAGES (International Marine Past Global Change Study).

Supplementary material

10584_2015_1451_MOESM1_ESM.pdf (292 kb)
(PDF 292 KB)


  1. Bamber JL, Aspinall WP (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Chang 3:424–427. doi: 10.1038/nclimate1778 CrossRefGoogle Scholar
  2. Boon JD (2012) Evidence of sea level acceleration at US and Canadian tide stations, Atlantic Coast, North America. J Coast Res 28(6):1437–1445. doi: 10.2112/JCOASTRES-D-12-00102.1 CrossRefGoogle Scholar
  3. Brain M, Kemp A, Horton B et al (2015) Quantifying the contribution of sediment compaction to late Holocene salt-marsh sea-level reconstructions (North Carolina, USA). Quaternary Research 83:41–51. doi: 10.1016/j.yqres.2014.08.003 CrossRefGoogle Scholar
  4. Brown LD (1978) Recent vertical crustal movement along the east coast of the united states. Tectonophysics 44(1):205–231CrossRefGoogle Scholar
  5. Church J, White N (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4):585–602. doi: 10.1007/s10712-011-9119-1 CrossRefGoogle Scholar
  6. Church JA, Clark PU et al (2013) Chapter 13: Sea level change. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate Change 2013: the Physical Science Basis. Cambridge University PressGoogle Scholar
  7. Clark JA, Lingle CS (1977) Future sea-level changes due to West Antarctic ice sheet fluctuations. Nature 269:206–209. doi: 10.1038/269206a0 CrossRefGoogle Scholar
  8. Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: a numerical calculation. Quat Res 9(3):265–287CrossRefGoogle Scholar
  9. Clark PU, Dyke AS, Shakun JD et al (2009) The Last Glacial Maximum. Science 325(5941):710–714. doi: 10.1126/science.1172873 CrossRefGoogle Scholar
  10. Collins M, Knutti R et al (2013) Chapter 12: Long-term climate change: Projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate Change 2013: the Physical Science Basis. Cambridge University PressGoogle Scholar
  11. Dillon WPP (1988) The Blake Plateau Basin and Carolina Trough. In: Sheridan RE, Grow JA (eds) The Atlantic Continental Margin: U.S. Geological Society of America, Boulder, CO, pp 291–328Google Scholar
  12. Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110(30):12,219–12,224. doi: 10.1073/pnas.1301293110 CrossRefGoogle Scholar
  13. Engelhart SE, Horton BP (2012) Holocene sea level database for the Atlantic coast of the United States. Quat Sci Rev 54(0):12–25. doi: 10.1016/j.quascirev.2011.09.013 CrossRefGoogle Scholar
  14. Engelhart SE, Horton BP, Douglas BC, Peltier WR (2009) Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37(12):1115–1118. doi: 10.1130/G30360A.1 CrossRefGoogle Scholar
  15. Engelhart SE, Peltier WR, Horton BP (2011) Holocene relative sea-level changes and glacial isostatic adjustment of the U.S. Atlantic coast. Geology 39(8):751–754. doi: 10.1130/G31857.1 CrossRefGoogle Scholar
  16. Ezer T, Atkinson LP (2014) Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2:362–382. doi: 10.1002/2014EF000252 CrossRefGoogle Scholar
  17. Ezer T, Corlett WB (2012) Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys Res Lett 39:L19–605. doi: 10.1029/2012GL053435 Google Scholar
  18. Ezer T, Atkinson LP, Corlett WB, Blanco JL (2013) Gulf Stream’s induced sea level rise and variability along the US mid-Atlantic coast. J Geophys Res 118:685–697. doi: 10.1002/jgrc.20091 CrossRefGoogle Scholar
  19. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Royal Astron Soc 46(3):647–667. doi: 10.1111/j.1365-246X.1976.tb01252.x CrossRefGoogle Scholar
  20. Foyle AM, Oertel GF (1997) Transgressive systems tract development and incised-valley fills within a Quaternary estuary-shelf system: Virginia inner shelf, USA. Mar Geol 137(3):227–249. doi: 10.1016/S0025-3227(96)00092-8 CrossRefGoogle Scholar
  21. Gohn GS (1988) Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida. In: Sheridan RE, Grow JA (eds) The Atlantic Continental Margin: U.S. Geological Society of America, Boulder, COGoogle Scholar
  22. Gregory JM (2010) Long-term effect of volcanic forcing on ocean heat content. Geophys Res Lett L22(22):701. doi: 10.1029/2010GL045507 Google Scholar
  23. Grow J, Sheridan RE (1988) U.S. Atlantic Continental Margin: a typical Atlantic-type or passive continental margin. In: Sheridan RE, Grow JA (eds) The Atlantic Continental Margin: U.S. Geological Society of America, Boulder, COGoogle Scholar
  24. Hay CC, Morrow ED, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of 20th century sea-level rise. Nature 517:481–484. doi: 10.1038/nature14093 CrossRefGoogle Scholar
  25. Horton BP, Peltier WR, Culver SJ et al (2009) Holocene sea-level changes along the North Carolina Coastline and their implications for glacial isostatic adjustment models. doi: 10.1016/j.quascirev.2009.02.002, vol 28, pp 1725–1736
  26. Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 84:1–6. doi: 10.1016/j.quascirev.2013.11.002 CrossRefGoogle Scholar
  27. Houser T, Hsiang S, Kopp R, Larsen K (2015) Economic Risks of Climate Change: An American Prospectus. Columbia University Press, New YorkGoogle Scholar
  28. Kemp AC, Horton BP, Donnelly JP et al (2011) Climate related sea-level variations over the past two millennia. Proc Natl Acad Sci 108(27):11,017–11,022. doi: 10.1073/pnas.1015619108 CrossRefGoogle Scholar
  29. Kemp AC, Horton BP, Vane CH et al (2013) Sea-level change during the last 2500 years in New Jersey, USA. Quat Sci Rev 81:90–104. doi: 10.1016/j.quascirev.2013.09.024 CrossRefGoogle Scholar
  30. Kemp AC, Bernhardt CE, Horton BP et al (2014) Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast. Mar Geol 357:90–100. doi: 10.1016/j.margeo.2014.07.010 CrossRefGoogle Scholar
  31. Kienert H, Rahmstorf S (2012) On the relation between Meridional Overturning Circulation and sea-level gradients in the Atlantic. Earth Syst Dynam 3(2):109–120. doi: 10.5194/esd-3-109-2012 CrossRefGoogle Scholar
  32. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17,401. doi: 10.1029/2011GL048604 Google Scholar
  33. Kopp RE (2013) Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophys Res Lett 40:3981–3985. doi: 10.1002/grl.50781 CrossRefGoogle Scholar
  34. Kopp RE, Mitrovica JX, Griffies SM et al (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Chang 103:619–625. doi: 10.1007/s10584-010-9935-1 CrossRefGoogle Scholar
  35. Kopp RE, Horton RM, Little CM et al (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth’s Future 2:383–406. doi: 10.1002/2014EF000239 CrossRefGoogle Scholar
  36. Kopp RE, Hay CC, Little CM, Mitrovica JX (2015) Geographic variability of sea-level change. Current Climate Change Reports. doi: 10.1007/s40641-015-0015-5
  37. Lautier J (2006) Hydrogeologic framework and ground water conditions in the North Carolina Southern Coastal Plain. North Carolina Department of Environment, Health, and Natural Resources, Division of Water ResourcesGoogle Scholar
  38. Marple R, Talwani P (2004) Proposed Shenandoah fault and East-Coast Stafford fault system and their implications for Eastern US tectonics. Southeast Geol 43(2):57–80Google Scholar
  39. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. doi: 10.5194/tc-6-1295-2012 CrossRefGoogle Scholar
  40. McHutchon A, Rasmussen C (2011) Gaussian process training with input noise. In: Advances in Neural Information Processing Systems, vol 24, pp 1341–1349Google Scholar
  41. Milne GA, Mitrovica JX (2008) Searching for eustasy in deglacial sea-level histories. Quat Sci Rev 27(25–26):2292–2302. doi: 10.1016/j.quascirev.2008.08.018 CrossRefGoogle Scholar
  42. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2(7):471–478. doi: 10.1038/ngeo544 CrossRefGoogle Scholar
  43. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323(5915):753–753. doi: 10.1126/science.1166510 CrossRefGoogle Scholar
  44. Mitrovica JX, Gomez N, Morrow E et al (2011) On the robustness of predictions of sea level fingerprints. Geophys J Int 187 (2):729–742. doi: 10.1111/j.1365-246X.2011.05090.x CrossRefGoogle Scholar
  45. North Carolina Coastal Resources Commission Science Panel on Coastal Hazards (2010). North Carolina Sea-Level Rise Assessment ReportGoogle Scholar
  46. North Carolina General Assembly (2012). House Bill 819 / Session Law 2012-202Google Scholar
  47. North Carolina Geological Survey (2004) Generalized Geologic Map of North Carolina. Digital representation by Medina MA, Reid JC, Carpenter HGoogle Scholar
  48. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi: 10.1146/ CrossRefGoogle Scholar
  49. Permanent Service for Mean Sea Level (2014) Tide gauge data.,, accessed 21 January 2014
  50. Poulter B, Feldman RL, Brinson MM et al (2009) Sea-level rise research and dialogue in North Carolina: Creating windows for policy change. Ocean Coast Manag 52(3):147–153. doi: 10.1016/j.ocecoaman.2008.09.010 CrossRefGoogle Scholar
  51. Rahmstorf S, Box JE, Feulner G et al (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change doi: 10.1038/nclimate2554
  52. Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge, MAGoogle Scholar
  53. Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91(4):496–515. doi: 10.1016/j.pocean.2011.07.021
  54. Rowley DB, Forte AM, Moucha R et al (2013) Dynamic topography change of the eastern United States since 3 million years ago. Science 340(6140):1560–1563. doi: 10.1126/science.1229180 CrossRefGoogle Scholar
  55. Sallenger AH, Doran KS, Howd PA (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat Clim Chang 2:884–888. doi: 10.1038/nclimate1597 CrossRefGoogle Scholar
  56. Shennan I, Milne G, Bradley S (2012) Late Holocene vertical land motion and relative sea-level changes: lessons from the British Isles. J Quat Sci 27(1):64–70. doi: 10.1002/jqs.1532 CrossRefGoogle Scholar
  57. Shepherd A, Ivins E R, Geruo A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  58. Sheridan R (1976) Sedimentary basins of the Atlantic margin of North America. Tectonophysics 36(1):113–132CrossRefGoogle Scholar
  59. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Ann Rev Mar Sci 5(1):21–46. doi: 10.1146/annurev-marine-121211-172406 CrossRefGoogle Scholar
  60. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bullet Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  61. Tebaldi C, Strauss BH, Zervas CE (2012) Modelling sea level rise impacts on storm surges along US coasts. Environ Res Lett 014(1):032. doi: 10.1088/1748-9326/7/1/014032 Google Scholar
  62. van de Plassche O, Wright AJ, Horton BP et al (2014) Estimating tectonic uplift of the Cape Fear Arch (southeast-Atlantic coast, USA) using reconstructions of Holocene relative sea level. J Quat Sci 29(8):749–759. doi: 10.1002/jqs.2746 CrossRefGoogle Scholar
  63. Van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  64. Wheeler RL (2006) Quaternary tectonic faulting in the Eastern United States. Eng Geol 82(3):165–186CrossRefGoogle Scholar
  65. Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the east coast of the United States. Geophys Res Lett 40:5514–5520. doi: 10.1002/2013GL057992 CrossRefGoogle Scholar
  66. Zervas CE (2004) North Carolina bathymetry/topography sea level rise project: determination of sea level trends. Technical Report NOS CO-OPS 041, National Oceanic and Atmospheric AdministrationGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Robert E. Kopp
    • 1
  • Benjamin P. Horton
    • 2
    • 3
  • Andrew C. Kemp
    • 4
  • Claudia Tebaldi
    • 5
  1. 1.Department of Earth and Planetary Sciences, Rutgers Energy Institute, and Institute of Earth, Ocean, and Atmospheric SciencesRutgers UniversityNew BrunswickUSA
  2. 2.Sea Level Research, Department of Marine and Coastal Sciences and Institute of Earth, Ocean, and Atmospheric SciencesRutgers UniversityNew BrunswickUSA
  3. 3.Earth Observatory of Singapore and Asian School of the EnvironmentNanyang Technological UniversityNanyangSingapore
  4. 4.Department of Earth and Ocean SciencesTufts UniversityMedfordUSA
  5. 5.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations