Advertisement

Climatic Change

, Volume 131, Issue 4, pp 649–661 | Cite as

Testing climate models using an impact model: what are the advantages?

  • Marc StéfanonEmail author
  • Nicolas K. Martin-StPaul
  • Paul Leadley
  • Sophie Bastin
  • Alessandro Dell’Aquila
  • Philippe Drobinski
  • Clemente Gallardo
Article

Abstract

Global and regional climate model (GCM and RCM) outputs are often used as climate forcing for ecological impact models, and this potentially results in large cumulative errors because information and error are passed sequentially along the modeling chain from GCM to RCM to impact model. There are also a growing number of Earth system modeling platforms in which climate and ecological models are dynamically coupled, and in this case error amplification due to feedbacks can lead to even more serious problems. It is essential in both cases to rethink the organization of evaluation which typically relies on independent validation at each successive step, and to rely more heavily on analyses that cover the full modeling chain and thus require stronger interactions between climate and impact modelers. In this paper, we illustrate the benefits of using impact models as an additional source of information for evaluating climate models. Four RCMs that are part of the HyMeX (Hydrological cycle in Mediterranean EXperiment) and Mediterranean CORDEX projects (MED-CORDEX) were tested with observed climatology and a process-based model of European beech (Fagus sylvatica L.) tree growth and forest ecosystem functioning that has been rigorously validated. This two part analysis i) indicates that evaluation of RCMs on climate variables alone may be insufficient to determine the suitability of RCMs for studies of climate-forest interactions and ii) points to areas of improvement in these RCMs that would improve impact studies or behavior in coupled climate-ecosystem models over the spatial domain studied.

Keywords

Tree Growth Bias Correction Impact Model European Beech Warm Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been funded by the Humboldt project funded by the GIS (Groupement d’Intérêt Scientifique) “Climat, Environnement et Société”. This work has also been carried out in the framework of the LabEx BASC (Biodiversity, Agrosystems, Society and Climate, ANR-11-LABX-0034). This work also contributes to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment – http://www.hymex.org) through INSU- MISTRALS support and the GEWEX program of WCRP. The simulations used in this work were downloaded from the Med-CORDEX database (www.medcordex.eu). We acknowledge: (i) Samuel Somot for providing one of the simulation outputs; (ii) the ESPRI/IPSL database teams and Julien Lenseigne for their technical support in data archive and simulations runs.

References

  1. Allouche O, Tsoar A, Ronen K (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232CrossRefGoogle Scholar
  2. Bedia J, Herrera S, Gutiérrez JM (2013) Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Glob Planet Chang 107:1–12CrossRefGoogle Scholar
  3. Brands S, Herrera S et al (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3-4):803–817CrossRefGoogle Scholar
  4. Cheaib A, Badeau V et al (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15(6):533–544CrossRefGoogle Scholar
  5. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62(5):591–604Google Scholar
  6. Davi H, Dufrêne E, Granier A, Le Dantec V, Barbaroux C, François C, Bréda N (2005) Modelling carbon and water cycles in a beech forest: part II.: validation of the main processes from organ to stand scale. Ecol Model 185(2):387–405CrossRefGoogle Scholar
  7. Davi H, Barbaroux C, Dufrêne E, François C, Montpied P, Bréda N, Badeck F (2008) Modelling leaf mass per area in forest canopy as affected by prevailing radiation conditions. Ecol Model 211(3–4):339–349CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. QJRMS 137(656):553–597CrossRefGoogle Scholar
  9. Delpierre N, Soudani K et al (2012) Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agric For Meteorol 154:99–112CrossRefGoogle Scholar
  10. Di Luca A, Flaounas E, Drobinski P, Brossier CL (2014) The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations. Clim Dyn 1–27Google Scholar
  11. Domínguez M, Gaertner MA, de Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land surface fields. Clim Dyn 35(1):249–265CrossRefGoogle Scholar
  12. Drobinski P, Ducrocq V, Alpert P et al (2014) HyMeX, a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00242.1 Google Scholar
  13. Dufrêne E, Davi H, François C, Maire GL, Dantec VL, Granier A (2005) Modelling carbon and water cycles in a beech forest: part I: model description and uncertainty analysis on modelled NEE. Ecol Model 185(2):407–436CrossRefGoogle Scholar
  14. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions “should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci Discuss 9(4):5355–5387CrossRefGoogle Scholar
  15. Fang J, Lechowicz M (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33(10):1804–1819CrossRefGoogle Scholar
  16. Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40(11–12):2687–2705CrossRefGoogle Scholar
  17. Flaounas E, Drobinski P, Borga M et al (2012) Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework. Environ Res Lett 7(2):024017CrossRefGoogle Scholar
  18. Giorgi F, Jones C, Asrar GR et al. (2009). Addressing climate information needs at the regionallevel: the CORDEX framework. WMO Bulletin 58 (3) - July 2009Google Scholar
  19. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi: 10.1029/2007JD008972 Google Scholar
  20. Kaplan JO, Bigelow NH, Prentice IC, et al. (2003) Climate change and arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19)Google Scholar
  21. Lebaube S, Le Goff N, Ottorini JM, Granier A (2000) Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57(1):49–61Google Scholar
  22. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate–tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401Google Scholar
  23. Lindner M, Maroschek M et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259(4):698–709CrossRefGoogle Scholar
  24. Lung T, Dosio A, Becker W, Lavalle C, Bouwer LM (2013) Assessing the influence of climate model uncertainty on EU-wide climate change impact indicators. Clim Chang 120(1-2):211–227CrossRefGoogle Scholar
  25. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  26. Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409CrossRefGoogle Scholar
  27. Quintana-Seguí P, Le Moigne P, Durand Y et al (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107CrossRefGoogle Scholar
  28. Ruffault J, Martin-StPaul NK, Duffet C, Goge F, Mouillot F (2014). Projecting future drought in Mediterranean forests: bias correction of climate models matters! Theor Appl Climatol 1–10Google Scholar
  29. Ruti P, Somot S, Dubois C, et al (2014) MED-CORDEX initiative for Mediterranean Climate studies (Bulletin of the American Meteorological Society, in revision)Google Scholar
  30. Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J Appl Bot 74:10–16Google Scholar
  31. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research wrf version 3. Technical Report, NCARGoogle Scholar
  32. Taylor KE (2001) Summarizing multiple aspects of model performance in single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  33. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  34. Teuling AJ, Stöckli R, Seneviratne SI (2011) Bivariate colour maps for visualizing climate data. Int J Climatol 31(9):1408–1412Google Scholar
  35. Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362CrossRefGoogle Scholar
  36. Thuiller W (2014) Editorial commentary on ‘patterns and uncertainties of species’ range shifts under climate change’. Glob Chang Biol 20(12):3593–3594CrossRefGoogle Scholar
  37. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  38. White RH, Toumi R (2013) The limitations of bias correcting regional climate model inputs. Geophys Res Lett 40(12):2907–2912CrossRefGoogle Scholar
  39. Wu H, Guo Z, Guiot J et al (2013) Elevation-induced climate change as a dominant factor causing the late Miocene C4 plant expansion in the Himalayan foreland. Glob Chang Biol. doi: 10.1111/gcb.12426 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marc Stéfanon
    • 1
    Email author
  • Nicolas K. Martin-StPaul
    • 1
    • 6
  • Paul Leadley
    • 1
  • Sophie Bastin
    • 2
  • Alessandro Dell’Aquila
    • 3
  • Philippe Drobinski
    • 4
  • Clemente Gallardo
    • 5
  1. 1.Laboratoire d’Écologie Systématique et Évolution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech)OrsayFrance
  2. 2.Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace (CNRS/UVSQ/UPMC)GuyancourtFrance
  3. 3.Ente per le Nuove Technologie, l’Energia e l’Ambiente (ENEA), Climate SectionRomeItaly
  4. 4.Laboratoire de Météorologie Dynamique (LMD) - Institut Pierre Simon Laplace, (CNRS/Ecole Polytechnique/ENS/UPMC)ParisFrance
  5. 5.Instituto de Ciencias Ambientales de la UCLMToledoSpain
  6. 6.Ecologie des Forêts Mediterraneennes, INRA, UR629F-84914 AvignonFrance

Personalised recommendations