Climatic Change

, Volume 131, Issue 4, pp 575–589 | Cite as

Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change

  • Philip M. FearnsideEmail author


When carbon credit is granted for projects that would occur irrespective of any subsidy based on mitigation of global warming, the projects generate “hot air,” or credit without a real climate benefit. This is the case for tropical hydroelectric dams, which are now a major destination for funds under the Kyoto Protocol’s Clean Development Mechanism (CDM). The countries that purchase the credit generated by dams can emit more greenhouse gases without their being offset by genuine mitigation. The limited funds available for mitigation are also wasted on subsidizing dams that would be built anyway. Tropical dams also emit substantially more greenhouse gases than are recognized in CDM accounting procedures. Tropical hydroelectric emissions are also undercounted in national inventories of greenhouse gases under the United Nations Framework Convention on Climate Change, giving them a role in undermining the effectiveness of as-yet undecided emission limits. Brazil’s Santo Antônio Dam, now under construction on the Madeira River, provides a concrete example indicating the need for reform of CDM regulations by eliminating credit for hydroelectric dams.


Clean Development Mechanism Global Warming Potential Clean Development Mechanism Project Carbon Credit Carbon Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author’s research is supported exclusively by academic sources: Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq: Proc. 305880/2007-1; 304020/2010-9; 573810/2008-7; 575853/2008-5) Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM (Proc. 708565) and Instituto Nacional de Pesquisas da Amazônia (INPA: PRJ15.125).

Supplementary material

10584_2015_1393_MOESM1_ESM.pdf (226 kb)
ESM 1 (PDF 226 kb)


  1. Baraúna GMQ, Marin REA (2011) O “fator participativo” nas audiências públicas das hidrelétricas de Jirau, Santo Antônio e Belo Monte. In: Zhouri A (ed) As tensões do lugar: hidrelétricas, sujeitos e licenciamento ambiental. Editora UFMG, Belo Horizonte, pp 93–125Google Scholar
  2. Barbosa RI, Fearnside PM (1996) Pasture burning in Amazonia: dynamics of residual biomass and the storage and release of aboveground carbon. J Geophys Res (Atmos) 101(D20):25,847–25,857. doi: 10.1029/96JD02090 CrossRefGoogle Scholar
  3. Barrieu P, Fehr M (2011) Integrated EUA and CER price modeling and application for spread option pricing. Centre for Climate Change Economics and Policy and Grantham Research Institute on Climate Change and the Environment working papers, 40. Centre for Climate Change Economics and Policy and Grantham Research Institute on Climate Change and the Environment, London, url: Google Scholar
  4. Barthem R, Goulding M (1997) The catfish connection: ecology, migration, and conservation of Amazon predators. Columbia University Press, New York, p 184Google Scholar
  5. Brazil, IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) (2008) Parecer Técnico No. 45/2008-COHID/CGENE/DILIC/IBAMA de 08 de agosto de 2008. Assunto: Análise da solicitação da emissão da Licença de Instalação do Aproveitamento Hidrelétrico de Santo Antônio. IBAMA, Brasília, Available at: Google Scholar
  6. CDM Methodologies Panel (2006) Draft thresholds and criteria for the eligibility of hydroelectric reservoirs as CDM projects. CDM Meth Panel Nineteenth Meeting Report, Annex 10. UNFCCC, Bonn, p 2, url: Google Scholar
  7. Chu S (2013) Spreadsheet of hydro projects in the CDM project pipeline [as of March 2013]. International Rivers, Berkeley, url: Google Scholar
  8. Cole JC (2012) Genesis of the CDM: the original policymaking goals of the 1997 Brazilian proposal and their evolution in the Kyoto protocol negotiations into the CDM. Int Environ Agreements 12:41–61. doi: 10.1007/s10784-010-9132-8 CrossRefGoogle Scholar
  9. Deberdt G, Teixeira I, Lima LMM, Campos MB, Choueri RB, Koblitz R, Franco SR, Abreu VLS (2007) Parecer Técnico No. 014/2007 de 21 de março de 2007. Assunto: Análise técnica do EIA/RIMA e de documentos correlatos referentes ao AHE de Santo Antônio e AHE de Jirau, ambos no rio Madeira, visando emissão de parecer quanto à viabilidade ambiental dos empreendimentos. FCOHID/CGENE/DILIC/IBAMA. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Brasília. Available at:
  10. dos Santos MA (2014) Trabalho técnico sobre GEEs de hidrelétricas. Email of 16 January 2014, 10:08 AM, from Marco Aurélio dos Santos to Philip M. Fearnside (available from PMF)Google Scholar
  11. dos Santos MA, Rosa LP, Nassi CD (2009) Emissões de gases de efeito estufa do reservatório hidrelétrico de Belo Monte – Fase de pré-enchimento do reservatório, In: Aproveitamento Hidrelétrico Belo Monte: Estudo de Impacto Ambiental. Fevereiro de 2009. Centrais Elétricas Brasileiras (ELETROBRÁS), Rio de Janeiro, RJ, Brazil. Volume 8, Appendix 141pp. Available at:
  12. dos Santos MA, Rosa LP, Matvienko B, dos Santos EO, D’Almeida Rocha CHE, Sikar E, Silva MB, Ayr Júnior MPB (2008) Emissões de gases de efeito estufa por reservatórios de hidrelétricas. Oecologia Bras 12(1):116–129Google Scholar
  13. du Monceau T, Brohé A (2011) Briefing paper “Baseline Setting and Additionality Testing within the Clean Development Mechanism (CDM)”. ED56638 Ref: CLIMA.B...3/ETU/2010/0020r. AEA Technology plc, London,UK. 42pp.
  14. Ecopart (Ecopart Assessoria em Negócios Empresariais Ltda.) (2011) Project design document form (CDM PDD) - Version 03. Available at:
  15. Fearnside PM (1996) Montreal meeting on ‘greenhouse’ gas impact of hydroelectric dams. Environ Conserv 23(3):272–273. doi: 10.1017/S0376892900038935 CrossRefGoogle Scholar
  16. Fearnside PM (1997) Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil’s Tucuruí Dam as compared to fossil fuel alternatives. Environ Conserv 24(1):64–75. doi: 10.1017/S0376892997000118 CrossRefGoogle Scholar
  17. Fearnside PM (2002) Time preference in global warming calculations: a proposal for a unified index. Ecol Econ 41(1):21–31. doi: 10.1016/S0921-8009(02)00004-6 CrossRefGoogle Scholar
  18. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly “clean” energy source. Clim Chang 66(2–1):1–8. doi: 10.1023/B:CLIM.0000043174.02841.23 CrossRefGoogle Scholar
  19. Fearnside PM (2011) Gases de Efeito Estufa no EIA-RIMA da Hidrelétrica de Belo Monte. Novos Cadernos NAEA 14(1):5–19CrossRefGoogle Scholar
  20. Fearnside PM (2012) Carbon credit for hydroelectric dams as a source of greenhouse-gas emissions: the example of Brazil’s Teles Pires Dam. Mitig Adapt Strat Global Chang 18(5):691–699. doi: 10.1007/s11027-012-9382-6 CrossRefGoogle Scholar
  21. Fearnside PM (2013a) Credit for climate mitigation by Amazonian dams: loopholes and impacts illustrated by Brazil’s Jirau hydroelectric project. Carbon Manag 4(6):681–696. doi: 10.4155/CMT.13.57 CrossRefGoogle Scholar
  22. Fearnside PM (2013b) Decision-making on Amazon dams: politics trumps uncertainty in the Madeira river sediments controversy. Water Altern 6(2):313–325Google Scholar
  23. Fearnside PM (2014a) As barragens e as inundações no rio Madeira. Ciência Hoje 53(314):56–57Google Scholar
  24. Fearnside PM (2014b) Impacts of Brazil’s Madeira river dams: unlearned lessons for hydroelectric development in Amazonia. Environ Sci Policy 38:164–172. doi: 10.1016/j.envsci.2013.11.004 CrossRefGoogle Scholar
  25. Fearnside PM (2014c) Brazil’s Madeira river dams: a setback for environmental policy in Amazonian development. Water Altern 7(1):156–169Google Scholar
  26. Fearnside PM, Pueyo S (2012) Underestimating greenhouse-gas emissions from tropical dams. Nat Clim Chang 2(6):382–384. doi: 10.1038/nclimate1540 CrossRefGoogle Scholar
  27. Flues F, Michaelowa A, Michaelowa K (2008) UN approval of greenhouse gas emission reduction projects in developing countries: The political economy of the CDM Executive Board. Proceedings of the German Development Economics Conference, 2008 (Zürich). url:
  28. Forster P, Artaxo P, Berntsen T et al (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  29. Goldenfum JA (2012) Challenges and solutions for assessing the impact of freshwater reservoirs on natural GHG emissions. Ecohydrol Hydrobiol 12:115–122. doi: 10.2478/v10104-012-0011-5 CrossRefGoogle Scholar
  30. Grandin K (2012) Variations of methane emissions within and between three hydroelectric reservoirs in Brazil. Department of Ecology and Evolution, Limnology, Uppsala University, Uppsala, p 71, url: Google Scholar
  31. Hällqvist E (2012) Methane emissions from three tropical hydroelectrical reservoirs. Committee of Tropical Ecology, Uppsala University, Uppsala, p 46, url: Google Scholar
  32. Haya B (2009) Measuring emissions against an alternative future: fundamental flaws in the structure of the Kyoto Protocol’s Clean Development Mechanism. Energy and Resources Group Working Paper ERG09-001. University of California, Berkeley, url: Google Scholar
  33. HydroWorld (2012) First turbine operational at Brazil’s Santo Antonio hydro plant. HydroWorld 28 February 2012. url:
  34. Michaelowa A, Purohit P (2007) Additionality determination of Indian CDM projects: Can Indian CDM project developers outwit the CDM Executive Board? Discussion Paper CDM-1. url:
  35. Moreira R (2013) Brasil terá uma das maiores linhas de transmissão do mundo. O Estado de São Paulo, 6 December 2013. url:,brasil-tera-uma-das-maiores-linhas-de-transmissao-do-mundo,172205,0.htm
  36. Myhre G, Bréon F-M, Collins W et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Working Group I Contribution to the IPCC Fifth Assessment Report. Cambridge University Press, Cambridge, pp 661–740, Available at: Google Scholar
  37. Pueyo S, Fearnside PM (2011) Emissões de gases de efeito estufa dos reservatórios de hidrelétricas: implicações de uma lei de potência. Oecologia Australis 15(2):114–127. doi: 10.4257/oeco.2011.1502.02. English translation available at:–engl.pdf CrossRefGoogle Scholar
  38. Rey O (2012) Um olhar para as grandes perdas de energia no sistema de transmissão elétrico brasileiro. In: Moreira PF (ed) Setor Elétrico Brasileiro e a Sustentabilidade no Século 21: Oportunidades e Desafios, 2a edn. Rios Internacionais, Brasília, pp 40–44, 100 pp. Available at:
  39. Santo Antônio Energia SA (2011) Santo Antonio Hydropower Project. PDD version: 01.1 (27/10/2011) Clean Development Mechanism Project Design Document Form (CDM-PDD) Version 03. Santo Antônio Energia S.A., Porto Velho, Rondônia, Brazil. 53pp. url:
  40. Schimel D, Alves D, Enting M et al (1996) Radiative forcing of climate change. In: Houghton JT Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 65–131Google Scholar
  41. Schneider L (2007) Is the CDM fulfilling its environmental and sustainable development objectives? An evaluation of the CDM and options for improvement. Öko-Institut, Berlin, p 75,
  42. Sethi R (2014) Re: Request for report on hydroelectric dam emissions cited in EB-15. Ref. 2014 342-S INQ-01469. [letter from CDM Exective board to Philip M. Fearnside dated 28 March 2014] Available at:
  43. Shindell D, Kuylensturna JCI, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189. doi: 10.1126/science.1210026 CrossRefGoogle Scholar
  44. Sterk W (2006) Hi all. Email from Wolfgang Sterk to International Rivers. 5 March 2006 (Available from PMF)Google Scholar
  45. Tavares M, Fariello D (2013) Aneel autoriza mudança na hidrelétrica de Santo Antônio. O Globo 2 July 2013. url:
  46. UNEP (United Nations Environment Programme) Risø Centre (2013) Risoe CDM/JI Pipeline analysis and database. UNEP Risø Centre, Risø, Denmark, url:
  47. UNFCCC (United Nations Framework Convention on Climate Change) (1997) Kyoto Protocol to the United Nations Framework Convention on Climate Change. Document FCCC/CP/1997;7/Add1 UNFCCC, Bonn, Germany. url:
  48. Yan K (2013) The global CDM hydro hall of shame. International Rivers, Berkeley, url: Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Institute Research in Amazonia (INPA)ManausBrazil

Personalised recommendations