Climatic Change

, Volume 129, Issue 1–2, pp 239–251 | Cite as

Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)



The impacts of climate change on fires are expected to be highly variable spatially and temporally. In heavily anthropized landscapes, the great number of factors affecting fire regimes further limits our ability to predict future fire activity caused by climate. To address this, we develop a new framework for analysing regional changes in fire regimes from specific spatiotemporal patterns of fires and climate, so-called pyroclimates. We aim to test the trends of fire activity and climate (1973–2009) across the Mediterranean and mountain ecosystems of south-eastern France, and to define the spatial distribution of pyroclimates. Stepwise-PCA and cluster analyses reveal that three pyroclimates capture the spatiotemporal patterns associated with fire regime and climatic conditions. Trend tests indicate a high significant increase in spring temperature and fire weather severity for most of the study area. In contrast, a general decreasing pattern of fire activity is observed since the early 1990s, specifically during summer in historically burned regions. However, winter and spring fires are becoming more frequent and extensive in less fire-prone mountains. Cross-correlation analyses indicate that inter-annual variations in extreme fire weather and fire activity were highly correlated. However, the intensity of relationships is pyroclimate-dependent. Our findings reveal that fire-climate relationships changed rapidly over space and time, presumably according to regional changes in land-use and fire policy. Assessing pyroclimates offers new perspectives for fire management and policy by delineating homogeneous zones with respect to fire, climate and their recent trends, and by revealing geographic contrasts in the underlying fire drivers.


Burned Area Fire Regime Fire Activity Fire Danger Fire Weather 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by the FUME Project under the European Union’s Seventh Framework Programme (FP7/2007–2013) and by grants from the National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA) to TF. The authors acknowledge the national meteorological agency Météo-France and Jean-Philippe Vidal for providing climate data. We also thank Christophe Bouillon for help in formatting the fire database.

Supplementary material

10584_2015_1332_MOESM1_ESM.docx (122 kb)
Fig. S1 Annual distribution of fire occurrence within the three pyroclimates of south-eastern France. Fire occurrence distribution was computed from kernel density estimates over the periods 1973–1989 and 1990–2009. (DOCX 121 kb)


  1. Aguado I, Chuvieco E, Borén R, Nieto H (2007) Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int J Wildland Fire 16:390–397CrossRefGoogle Scholar
  2. Archibald S, Staver AC, Levin SA (2012) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci 109:847–852. doi: 10.1073/pnas.1118648109 CrossRefGoogle Scholar
  3. Batllori E, Parisien M-A, Krawchuk MA, Moritz MA (2013) Climate change-induced shifts in fire for Mediterranean ecosystems. Glob Ecol Biogeogr 22:1118–1129. doi: 10.1111/geb.12065 CrossRefGoogle Scholar
  4. Bedia J, Herrera S, Camia A, et al (2013) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim Change 1–15. doi: 10.1007/s10584-013-1005-z
  5. Biondi F, Jamieson LP, Strachan S, Sibold J (2011) Dendroecological testing of the pyroclimatic hypothesis in the central Great Basin, Nevada, USA. Ecosphere 2:art5Google Scholar
  6. Bond WJ, Keeley JE (2005) Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394CrossRefGoogle Scholar
  7. Boulanger Y, Gauthier S, Burton PJ, Vaillancourt M-A (2012) An alternative fire regime zonation for Canada. Int J Wildland Fire 21:1052–1064CrossRefGoogle Scholar
  8. Bowman DMJS, Balch J, Artaxo P et al (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236. doi: 10.1111/j.1365-2699.2011.02595.x CrossRefGoogle Scholar
  9. Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr 19:145–158. doi: 10.1111/j.1466-8238.2009.00512.x CrossRefGoogle Scholar
  10. Brotons L, Aquilué N, de Cáceres M et al (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean Landscapes. PLoS One 8:e62392. doi: 10.1371/journal.pone.0062392 CrossRefGoogle Scholar
  11. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27. doi: 10.1080/03610927408827101 CrossRefGoogle Scholar
  12. Carvalho A, Flannigan MD, Logan K et al (2008) Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. Int J Wildland Fire 17:328–338CrossRefGoogle Scholar
  13. Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  14. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73Google Scholar
  15. Dimitrakopoulos AP, Bemmerzouk AM, Mitsopoulos ID (2011) Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol Appl 18:83–93. doi: 10.1002/met.214 CrossRefGoogle Scholar
  16. Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262:221–229CrossRefGoogle Scholar
  17. Ganteaume A, Camia A, Jappiot M et al (2013) A review of the main driving factors of forest fire ignition over Europe. Environ Manage 51:651–662CrossRefGoogle Scholar
  18. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196CrossRefGoogle Scholar
  19. Herrera S, Bedia J, Gutiérrez JM et al (2013) On the projection of future fire danger conditions with various instantaneous/mean-daily data sources. Clim Change 118:827–840. doi: 10.1007/s10584-012-0667-2 CrossRefGoogle Scholar
  20. Krawchuk MA, Moritz MA, Parisien M-A et al (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS One 4:e5102CrossRefGoogle Scholar
  21. Makarenkov V, Legendre P (2001) Optimal variable weighting for ultrametric and additive trees and K-means partitioning: methods and software. J Classif 18:245–271. doi: 10.1007/s00357-001-0018-x Google Scholar
  22. Marlon JR, Bartlein PJ, Carcaillet C et al (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702CrossRefGoogle Scholar
  23. Métailié J-P (2006) Mountain landscape, pastoral management and traditional practices in the Northern Pyrenées (France). Conserv Cult Landsc CAB Int 108–124Google Scholar
  24. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95CrossRefGoogle Scholar
  25. Moritz MA, Parisien M-A, Batllori E, et al (2012) Climate change and disruptions to global fire activity. Ecosphere 3:art49Google Scholar
  26. Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob Change Biol 11:398–420. doi: 10.1111/j.1365-2486.2005.00920.x CrossRefGoogle Scholar
  27. Mouillot F, Ratte J-P, Joffre R et al (2003) Some determinants of the spatio-temporal fire cycle in a mediterranean landscape (Corsica, France). Landsc Ecol 18:665–674. doi: 10.1023/B:LAND.0000004182.22525.a9 CrossRefGoogle Scholar
  28. Murphy BP, Williamson GJ, Bowman DMJS (2011) Fire regimes: moving from a fuzzy concept to geographic entity. New Phytol 192:316–318. doi: 10.1111/j.1469-8137.2011.03893.x CrossRefGoogle Scholar
  29. Oksanen J, Blanchet FG, Kindt R, et al (2013) vegan: Community Ecology Package. R package version 2.0-7.
  30. Pausas JG (2004) Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350. doi: 10.1023/B:CLIM.0000018508.94901.9c CrossRefGoogle Scholar
  31. Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226. doi: 10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  32. Pausas JG, Paula S (2012) Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–1082. doi: 10.1111/j.1466-8238.2012.00769.x CrossRefGoogle Scholar
  33. Pellizzaro G, Cesaraccio C, Duce P et al (2007) Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int J Wildland Fire 16:232–241CrossRefGoogle Scholar
  34. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal Eastern Spain. Clim Change 38:345–357. doi: 10.1023/A:1005316632105 CrossRefGoogle Scholar
  35. Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies. J Geophys Res Atmospheres 1984–2012 99:10823–10831Google Scholar
  36. Prométhée (2011) La banque de données sur les incendies de forêts en région Méditerranéenne en France.
  37. R Core Team (2013) R: A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  38. Santander Meteorology Group (2012) fume: FUME packageGoogle Scholar
  39. Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci 103:13116–13120CrossRefGoogle Scholar
  40. Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12:1435–1450CrossRefGoogle Scholar
  41. Turco M, Llasat M-C, Hardenberg J von, Provenzale A (2014) Climate change impacts on wildfires in a Mediterranean environment. Clim Change 1–12. doi: 10.1007/s10584-014-1183-3
  42. Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report 35, Canadian Forestry Service, Ottawa, CanadaGoogle Scholar
  43. Van Wagner CE, Pickett TL (1985) Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33, Canadian Forestry Service, Ottawa, CanadaGoogle Scholar
  44. Venables WN, Ripley BD (2002) Time Series Analysis. Mod. Appl. Stat. S. Springer New York, pp 387–418Google Scholar
  45. Venäläinen A, Korhonen N, Hyvärinen O et al (2014) Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat Hazards Earth Syst Sci 14:1477–1490. doi: 10.5194/nhess-14-1477-2014 CrossRefGoogle Scholar
  46. Vidal J, Martin E, Franchistéguy L et al (2010) A 50‐year high‐resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644. doi: 10.1002/joc.2003 CrossRefGoogle Scholar
  47. Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA-high-resolution spatial climate data for western North America. J Appl Meteorol Climatol 51:16–29CrossRefGoogle Scholar
  48. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. doi: 10.1080/01621459.1963.10500845 CrossRefGoogle Scholar
  49. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–943. doi: 10.1126/science.1128834 CrossRefGoogle Scholar
  50. Wotton BM (2009) Interpreting and using outputs from the Canadian forest fire danger rating system in research applications. Environ Ecol Stat 16:107–131. doi: 10.1007/s10651-007-0084-2 CrossRefGoogle Scholar
  51. Zimmermann NE, Kienast F (2009) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482CrossRefGoogle Scholar
  52. Zimmermann NE, Gebetsroither E, Zuger J, et al (2013) Future Climate of the European Alps. Manag. Strateg. Adapt Alp. Space For. Clim. Change RisksGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Ecosystèmes Méditerranéens et risquesIRSTEAAix en ProvenceFrance

Personalised recommendations