Climatic Change

, Volume 127, Issue 2, pp 335–351 | Cite as

Emission metrics and sea level rise

  • Erik SternerEmail author
  • Daniel J. A. Johansson
  • Christian Azar


Here we present two new metrics used for comparing climate impacts of emissions of different climate forcers: the Global Sea level rise Potential (GSP) and the Integrated Global Sea level rise Potential (IGSP). The GSP represents the Sea Level Rise (SLR) at a given time horizon due to an emission pulse of a forcer; the IGSP is similar but represents the time integrated SLR up to a given point in time. The GSP and IGSP are presented relative to the SLR caused by a comparable emission pulse of carbon dioxide. The metrics are assessed using an Upwelling-Diffusion Energy Balance Model (UDEBM). We focus primarily on the thermosteric part of SLR, denoted GSPth. All of the examined climate forcers – even black carbon, a very Short-Lived Climate Forcer (SLCF) – have considerable influence on the thermosteric SLR on the century time scale. For a given time horizon and forcer, GSPth lies in between the corresponding metric values obtained using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), whereas IGSPth ends up in the opposite end to GTP in the spectrum of compared metrics. GSPth and IGSPth are more sensitive for SLCFs than for the long-lived Greenhouse Gases (GHGs) to changes in the parameterization of the model (under the time horizons considered here).

We also use a Semi-Empirical (SE) model to estimate the full SLR, and corresponding GSPSE and IGSPSE, as alternatives to the thermosteric approach. For SLCFs, GSPSE is greater than GSPth for all time horizons considered, while the opposite holds for long-lived GHGs such as SF6.


Black Carbon Global Warming Potential Emission Pulse Adjustment Time Climate Forcer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Paulina Essunger and two anonymous reviewers for valuable comments. Funding from the Swedish Energy Agency and Carl Bennet AB is gratefully acknowledged.

Supplementary material

10584_2014_1258_MOESM1_ESM.docx (400 kb)
ESM 1 (DOCX 400 kb)


  1. Azar C, Johansson DJA (2012) On the relationship between metrics to compare greenhouse gases & ;–; the case of IGTP, GWP and SGTP. Earth Syst Dyn 3:139–147. doi: 10.5194/esd-3-139-2012 CrossRefGoogle Scholar
  2. Baker MB, Roe GH (2009) The Shape of Things to Come: Why Is Climate Change So Predictable? J Clim 22:4574–4589. doi: 10.1175/2009JCLI2647.1 CrossRefGoogle Scholar
  3. Church JA, Clark PU, Cazenave A, et al. (2013) Sea Level Change. In: Climate Change 2013: The physical science basis. Contribution of working group 1 to the fifth assessment report of the IPCC. [Stocker TF, Dahe Q, Plattner G-K, et al.]Google Scholar
  4. Fisher DA, Hales CH, Wang W-C et al (1990) Model calculations of the relative effects of CFCs and their replacements on global warming. Nature 344:513–516. doi: 10.1038/344513a0 CrossRefGoogle Scholar
  5. Fuglestvedt JS, Berntsen TK, Godal O et al (2003) Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices. Clim Chang 58:267–331. doi: 10.1023/A:1023905326842 CrossRefGoogle Scholar
  6. Fuglestvedt JS, Shine KP, Berntsen T et al (2010) Transport impacts on atmosphere and climate: Metrics. Atmos Environ 44:4648–4677. doi: 10.1016/j.atmosenv.2009.04.044 CrossRefGoogle Scholar
  7. Gill AE (1982) Atmosphere–ocean dynamics. Academic pressGoogle Scholar
  8. Gillett NP, Matthews HD (2010) Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ Res Lett 5:034011CrossRefGoogle Scholar
  9. Hoffert MI, Callegari AJ, Hsieh C-T (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res Oceans 85:6667–6679. doi: 10.1029/JC085iC11p06667 CrossRefGoogle Scholar
  10. Hu A, Xu Y, Tebaldi C et al (2013) Mitigation of short-lived climate pollutants slows sea-level rise. Nat Clim Chang 3:730–734. doi: 10.1038/nclimate1869 CrossRefGoogle Scholar
  11. Johansson DJA (2011) Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles. Clim Chang 108:107–134. doi: 10.1007/s10584-010-9969-4 CrossRefGoogle Scholar
  12. Johansson DJA (2012) Economics- and physical-based metrics for comparing greenhouse gases. Clim Chang 110:123–141. doi: 10.1007/s10584-011-0072-2 CrossRefGoogle Scholar
  13. Jones PD, Lister DH, Osborn TJ, et al. (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres (1984–2012) 117:Google Scholar
  14. Joos F, Roth R, Fuglestvedt JS et al (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825. doi: 10.5194/acp-13-2793-2013 CrossRefGoogle Scholar
  15. Kriegler E (2005) Imprecise Probability Analysis for Integrated Assessment of Climate Change.Google Scholar
  16. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531. doi: 10.1038/344529a0 CrossRefGoogle Scholar
  17. Lenton TM (2011) Beyond 2 °C: redefining dangerous climate change for physical systems. Wiley Interdiscip Rev Clim Chang 2:451–461. doi: 10.1002/wcc.107 CrossRefGoogle Scholar
  18. Levermann A, Clark PU, Marzeion B et al (2013) The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci 110:13745–13750CrossRefGoogle Scholar
  19. Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Pap. 13:Google Scholar
  20. Levitus S, Antonov JI, Boyer TP et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39, L10603CrossRefGoogle Scholar
  21. Li C, von Storch JS, Marotzke J (2012) Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics 1–16Google Scholar
  22. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677. doi: 10.1038/35070541 CrossRefGoogle Scholar
  23. Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456. doi: 10.5194/acp-11-1417-2011 CrossRefGoogle Scholar
  24. Meinshausen M, Smith SJ, Calvin K et al (2011b) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241CrossRefGoogle Scholar
  25. Myhre G, Shindell D, Bréon F-M, et al. (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The physical science basis. Contribution of working group 1 to the fifth assessment report of the IPCC. [Stocker TF, Dahe Q, Plattner G-K, et al.]Google Scholar
  26. Olivié D, Stuber N (2010) Emulating AOGCM results using simple climate models. Clim Dyn 35:1257–1287. doi: 10.1007/s00382-009-0725-2 CrossRefGoogle Scholar
  27. O’Neill BC (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443CrossRefGoogle Scholar
  28. Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS (2011) The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ Res Lett 6:044021. doi: 10.1088/1748-9326/6/4/044021 CrossRefGoogle Scholar
  29. Plattner G-K, Stocker T, Midgley P et al (2009) IPCC expert meeting on the science of alternative metrics. Meeting report, IPCC, Geneva (CH)Google Scholar
  30. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi-empirical sea level projections. Clim Dyn 1–15Google Scholar
  31. Reisinger A, Meinshausen M, Manning M, Bodeker G (2010) Uncertainties of global warming metrics: CO2 and CH4. Geophysical Research Letters 37:n/a–n/a. doi:  10.1029/2010GL043803
  32. Rodhe H (1990) A Comparison of the Contribution of Various Gases to the Greenhouse Effect. Science 248:1217–1219. doi: 10.1126/science.248.4960.1217 CrossRefGoogle Scholar
  33. Schaeffer M, Hare W, Rahmstorf S, Vermeer M (2012) Long-term sea-level rise implied by 1.5 C and 2 C warming levels. Nature Climate ChangeGoogle Scholar
  34. Shine KP, Derwent RG, Wuebbles DJ, Morcrette JJ (1990) Radiative forcing of climate. In the first assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  35. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim Chang 68:281–302. doi: 10.1007/s10584-005-1146-9 CrossRefGoogle Scholar
  36. Smith SJ, Wigley ML (2000) Global warming potentials: 1. Climatic implications of emissions reductions. Clim Chang 44:445–457CrossRefGoogle Scholar
  37. Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Chang 115:893–902. doi: 10.1007/s10584-012-0610-6 CrossRefGoogle Scholar
  38. Stenchikov G, Delworth TL, Ramaswamy V et al (2009) Volcanic signals in oceans. J Geophys Res. doi: 10.1029/2008JD011673 Google Scholar
  39. Tanaka K, O’Neill BC, Rokityanskiy D et al (2009) Evaluating global warming potentials with historical temperature. Clim Chang 96:443–466CrossRefGoogle Scholar
  40. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532CrossRefGoogle Scholar
  41. Wigley TML, Raper SCB (2005) Extended scenarios for glacier melt due to anthropogenic forcing. Geophysical research letters 32:L05704Google Scholar
  42. Wuebbles DJ, Jain AK, Patten KO, Grant KE (1995) Sensitivity of direct global warming potentials to key uncertainties. Clim Chang 29:265–297. doi: 10.1007/BF01091865 CrossRefGoogle Scholar
  43. Xie S-P, Lu B, Xiang B (2013) Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat Geosci. doi: 10.1038/ngeo1931 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Erik Sterner
    • 1
    Email author
  • Daniel J. A. Johansson
    • 1
  • Christian Azar
    • 1
  1. 1.Physical Resource TheoryChalmers University of TechnologyGothenburgSweden

Personalised recommendations