Climatic Change

, Volume 126, Issue 3–4, pp 351–364 | Cite as

Assessing climate change impacts on the Iberian power system using a coupled water-power model

  • Silvio J. Pereira-Cardenal
  • Henrik Madsen
  • Karsten Arnbjerg-Nielsen
  • Niels Riegels
  • Roar Jensen
  • Birger Mo
  • Ivar Wangensteen
  • Peter Bauer-Gottwein
Article

Abstract

Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However, these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes in precipitation will reduce runoff, decrease hydropower production (with accompanying increases in thermal generation), and increase irrigation water use, while higher temperatures will shift power demand from winter to summer months. The combined impact of these effects will generally make it more challenging to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands.

Supplementary material

10584_2014_1221_MOESM1_ESM.pdf (471 kb)
ESM 1(PDF 470 kb)

References

  1. Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res 116. doi: 10.1029/2010JD015481Google Scholar
  2. Bright EA, Coleman PR, King AL, Rose AN (2008) LandScan 2007. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  3. CCSP (2012) Effects of Climate Change on Energy Production and Use in the United States. Department of Energy, WashingtonGoogle Scholar
  4. CEDEX (2012) Anuario de Aforos. Centro de Estudios y Experimentacion de Obras Publicas. http://hercules.cedex.es/general/default.htm. Accessed 1 November 2012
  5. CNE (2008) Propuesta de Revision de la Tarifa Electrica a partir del 1 de julio de 2008. Comisión Nacional de Energia, MadridGoogle Scholar
  6. DOE (2006) Energy demands on water resources - Report to Congress on the Interdependency of Energy and Water. US Department of EnergyGoogle Scholar
  7. Doorman G (2009) Hydro Power Scheduling Course EKL15. Department of Electric Power Engineering. NTNU, TrondheimGoogle Scholar
  8. Ebinger JO, Vergara W (2011) Climate impacts on energy systems key issues for energy sector adaptation. World Bank, WashingtonCrossRefGoogle Scholar
  9. Forster H, Lilliestam J (2010) Modeling thermoelectric power generation in view of climate change. Reg Environ Chang 10:327–338CrossRefGoogle Scholar
  10. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578CrossRefGoogle Scholar
  11. Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2° C global warming. Global Planet Chang 68:209–224CrossRefGoogle Scholar
  12. Gleick PH, Pacific Institute for Studies in Development E.a.S., and Stockholm Environment Institute (1993) Water and Energy. In: Gleick PH (ed) Water in crisis a guide to the world’s fresh water resources. Oxford Univ Press, New York, pp 67–79Google Scholar
  13. Golombek R, Kittelsen SAC, Haddeland I (2012) Climate change: impacts on electricity markets in Western Europe. Clim Chang 113:357–370CrossRefGoogle Scholar
  14. Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113. doi: 10.1029/2008JD010201Google Scholar
  15. Herrera S, Fita L, Fernandez J, Gutierrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115. doi: 10.1029/2010JD013936Google Scholar
  16. Herrera S, Gutierrez JM, Ancell R, Pons MR, Frias MD, Fernandez J (2012) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85CrossRefGoogle Scholar
  17. Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115CrossRefGoogle Scholar
  18. Hoffman AR (2004) The Connection: Water and Energy Security. Institute for the Analysis of Global Security. www.iags.org/n0813043.htm. Accessed 1 November 2012
  19. IDAE (2005) Plan de Energia Renovable en España 2005–2010. Ministerio de Industria, Turismo y Comercio, MadridGoogle Scholar
  20. Isaac M, van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Pol 37:507–521CrossRefGoogle Scholar
  21. Jacob D, Van den Hurk BJJM, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Kopken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43CrossRefGoogle Scholar
  22. Jaeger EB, Anders I, Luthi D, Rockel B, Schar C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17:349–367CrossRefGoogle Scholar
  23. Koch H, Vogele S (2009) Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol Econ 68:2031–2039CrossRefGoogle Scholar
  24. Lehner B, Czisch G, Vassolo S (2005) The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Pol 33:839–855CrossRefGoogle Scholar
  25. Lopez-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374:384–396CrossRefGoogle Scholar
  26. Madani K, Lund JR (2009) Modeling California’s high-elevation hydropower systems in energy units. Water Resour Res 45Google Scholar
  27. Madsen H (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol 235:276–288CrossRefGoogle Scholar
  28. Mideksa TK, Kallbekken S (2010) The impact of climate change on the electricity market: a review. Energy Pol 38:3579–3585CrossRefGoogle Scholar
  29. MMA (2007) El Agua en la Economia Española: Situación y Perspectivas. Ministerio del Medio Ambiente, MadridGoogle Scholar
  30. Nielsen SA, Hansen E (1973) Numerical simulation of the rainfall-runoff process on a daily basis. Nord Hydrol 4:171–190Google Scholar
  31. Olsson G (2012) Water and Energy. IWA Publishing, LondonGoogle Scholar
  32. OMIE (2012) Resultados del Mercado. Operador del Mercado Iberico de Electricidad - Polo Espanol. http://www.omie.es/files/flash/ResultadosMercado.swf. Accessed 1 November 2012
  33. Oudin L, Hervieu F, Michel C, Perrin C, Andreassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303:290–306CrossRefGoogle Scholar
  34. Pereira MVF, Pinto LMVG (1991) Multistage stochastic optimization applied to energy planning. Math Program 52:359–375CrossRefGoogle Scholar
  35. REE (2012) El Sistema Electrico Español 2011. MadridGoogle Scholar
  36. REN (2012) Caracterizacao da Rede Nacional de Transporte. Rede Electrica Nacional, LisboaGoogle Scholar
  37. Rubbelke D, Vogele S (2013) Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses? Clim Chang 116:191–206CrossRefGoogle Scholar
  38. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the swiss alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sc 11:1191–1205CrossRefGoogle Scholar
  39. Seljom P, Rosenberg E, Fidje A, Haugen JE, Meir M, Rekstad J, Jarlset T (2011) Modelling the effects of climate change on the energy system-a case study of Norway. Energy Pol 39:7310–7321CrossRefGoogle Scholar
  40. SINTEF (2011) Climate Change 2020–2050: Consequences for the NordPool electricity market. Trondheim, NorwayGoogle Scholar
  41. SNIRH (2012) Redes de Monitorizacao. Sistema Nacional de Informacao de Recursos Hidricos. www.snirh.pt/index.php. Accessed 1 November 2012
  42. Stage S, Larsson Y (1961) Incremental cost of water power. T Am Inst Electr Eng 80:361–364Google Scholar
  43. Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40:1413–1421CrossRefGoogle Scholar
  44. van der Linden P, Mitchell JFB (2012) Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UKGoogle Scholar
  45. van Meijgaard E, van Ulft L, van de Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO, version 2.1, Tech. Rep. 302. R. Neth. Meteorol. Inst., De Bilt. NetherlandsGoogle Scholar
  46. van Vliet MTH, Yearsley JR, Ludwig F, Vogele S, Lettenmaier DP, Kabat P (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Chang 2:676–681Google Scholar
  47. Vicuna S, Leonardson R, Hanemann MW, Dale LL, Dracup JA (2008) Climate change impacts on high elevation hydropower generation in California’s sierra Nevada: a case study in the upper american river. Clim Chang 87:S123–S137CrossRefGoogle Scholar
  48. Wolfgang O, Haugstad A, Mo B, Gjelsvik A, Wangensteen I, Doorman G (2009) Hydro reservoir handling in Norway before and after deregulation. Energy 34:1642–1651CrossRefGoogle Scholar
  49. Wriedt G, Van der Velde M, Aloe A, Bouraoui F (2009) Estimating irrigation water requirements in Europe. J Hydrol 373:527–544CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Silvio J. Pereira-Cardenal
    • 1
  • Henrik Madsen
    • 2
  • Karsten Arnbjerg-Nielsen
    • 1
  • Niels Riegels
    • 2
  • Roar Jensen
    • 2
  • Birger Mo
    • 3
  • Ivar Wangensteen
    • 4
  • Peter Bauer-Gottwein
    • 1
  1. 1.Department of Environmental Engineering, DTUKongens LyngbyDenmark
  2. 2.DHIHørsholmDenmark
  3. 3.SINTEF Energy ResearchTrondheimNorway
  4. 4.NTNU, Department of Electric Power EngineeringTrondheimNorway

Personalised recommendations