Climatic Change

, Volume 125, Issue 3–4, pp 349–363 | Cite as

The year-long unprecedented European heat and drought of 1540 – a worst case

  • Oliver Wetter
  • Christian Pfister
  • Johannes P. Werner
  • Eduardo Zorita
  • Sebastian Wagner
  • Sonia I. Seneviratne
  • Jürgen Herget
  • Uwe Grünewald
  • Jürg Luterbacher
  • Maria-Joao Alcoforado
  • Mariano Barriendos
  • Ursula Bieber
  • Rudolf Brázdil
  • Karl H. Burmeister
  • Chantal Camenisch
  • Antonio Contino
  • Petr Dobrovolný
  • Rüdiger Glaser
  • Iso Himmelsbach
  • Andrea Kiss
  • Oldřich Kotyza
  • Thomas Labbé
  • Danuta Limanówka
  • Laurent Litzenburger
  • Øyvind Nordl
  • Kathleen Pribyl
  • Dag Retsö
  • Dirk Riemann
  • Christian Rohr
  • Werner Siegfried
  • Johan Söderberg
  • Jean-Laurent Spring
Article

Abstract

The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.

Supplementary material

10584_2014_1184_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1302 kb)

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research – Atmospheres, 111:D05109Google Scholar
  2. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of europe. Science 332:220–224CrossRefGoogle Scholar
  3. Battipaglia G, Frank D, Büntgen U, Dobrovolný P, Brázdil R, Pfister C, Esper J (2010) Five centuries of central European temperature extremes reconstructed from tree-ring density and documentary evidence. Glob Planet Chang 72:182–191CrossRefGoogle Scholar
  4. Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction of March-July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239CrossRefGoogle Scholar
  5. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Chang 101:7–40CrossRefGoogle Scholar
  6. Brázdil R, Dobrovolný P, Trnka M, Kotyza O, Řezníčková L, Valášek H, Zahradníček P, Štěpánek P (2013a) Droughts in the Czech lands, 1090–2012 AD. Clim Past 9:1985–2002CrossRefGoogle Scholar
  7. Brázdil R, Kotyza O, Dobrovolný P, Řezníčková L, Valášek H (2013b) Climate of the Sixteenth Century in the Czech Lands. Masaryk University, Brno, pp. 286Google Scholar
  8. Bundesanstalt für Gewässerkunde (2006) Niedrigwasserperiode 2003 in Deutschland. Ursachen – Wirkungen – Folgen. Mitteilungen 27, KoblenzGoogle Scholar
  9. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variation in the European Alps, A.D. 755–2004. J Clim 19:5606–5623CrossRefGoogle Scholar
  10. Büntgen U, Brázdil R, Heussner KU, Hoffmann J, Kontic R, Kyncl T, Pfister C, Chromá K, Tegel W (2011) Combined dendro-documentary evidence of central European hydroclimatic springtime extremes over the last millennium. Quat Sci Rev 30(27–28):3947–3959. doi:10.1016/j.quascirev.2011.10.010 CrossRefGoogle Scholar
  11. Buwal BWG, Meteo S (2004) Auswirkungen des Hitzesommers 2003 auf die Gewässer. Schriftenr Umwelt Nr 369:1–174Google Scholar
  12. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25(14):1855–1880CrossRefGoogle Scholar
  13. Ciscar JC, Saveyn B, Soria A, Szabo L, Van Regemorter D, Van Ierland T (2012) A comparability analysis of global burden sharing GHG reduction scenarios. Energy Policy 55:73–81CrossRefGoogle Scholar
  14. Collins M, Knutti R, Arblaster JM, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: Projections, commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in pressGoogle Scholar
  15. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly, seasonal and annual temperature reconstructions for central Europe derived from documentary evidence and instrumental records since AD1500. Clim Chang 101:69–107CrossRefGoogle Scholar
  16. Dobrovolný P, Brázdil R, Trnka M, Kotyza O, Valášek H (2014) Precipitation reconstruction for the Czech Lands, AD 1501–2010, Int. J. of Climatology, acceptedGoogle Scholar
  17. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Caesar J (2013) Global land-based datasets for monitoring climatic extremes. Bull Am Meteorol Soc 94:997–1006. doi:10.1175/BAMS-D-12-00109.1 CrossRefGoogle Scholar
  18. Esper J, Büntgen U, Frank D, Pichler T, Nicolussi K (2007) Updating the Tyrol treering dataset. In: Haneca, K., et al. (Ed.), Tree rings in archaeology, climatology and ecology. TRACE, vol. 5:80–85Google Scholar
  19. Ferranti L, Viterbo P (2006) The European summer of 2003: sensitivity to soil water initial conditions. J Clim 19:3659–3680CrossRefGoogle Scholar
  20. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099CrossRefGoogle Scholar
  21. García-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the European summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306CrossRefGoogle Scholar
  22. Gelman A et al (2003) Bayesian data analysis. Text in Statistical Science. Chapman & Hall, Boca RatonGoogle Scholar
  23. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  24. Glaser R, Brázdil R, Pfister C, Dobrovolný P, Barriendos M, Bokwa A, Camuffo A, Kotyza O, Limanówka D, Rácz L, Rodrigo FS (1999) Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Clim Chang 43(1):169–200CrossRefGoogle Scholar
  25. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc. Natl. Acad. Sci. USA, www.pnas.org/cgi/doi/10.1073/pnas.1205276109
  26. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: Atmosphere and surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press.Google Scholar
  27. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1165CrossRefGoogle Scholar
  28. Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M, Meriläinen J (2009) Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural insta-bility of thermohaline circulation on multi-decadal and multi-centennial scales. J Quatern Sci. doi:10.1002/jqs.1291
  29. Herget H, Meurs H (2010) Reconstructing peak discharges for historic flood levels in the city of cologne. Germany Global Planet Chang 70:108–116CrossRefGoogle Scholar
  30. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21. doi:10.1038/ngeo1032 CrossRefGoogle Scholar
  31. Jacobeit J, Wanner H, Gudd M (1999) European surface pressure patterns for months with outstanding climatic anomalies during the sixteenth century. Clim Chang 43:201–221CrossRefGoogle Scholar
  32. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clym Dyn 36:1919–1939CrossRefGoogle Scholar
  33. Koster RD, Suarez MJ (2001) Soil moisture memory in climate models. J Hydrometeorol 2:558–570CrossRefGoogle Scholar
  34. Limanówka D (2001) Rekonstrukcja warunków klimatycznych krakowa w pierwszej polowie XVI wieku. Mat Badaw IMGW Seria Meteorol 33:3–176Google Scholar
  35. Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its links to soil moisture memory. Geophys Res Lett 37, L09703. doi:10.1029/2010GL042764 Google Scholar
  36. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305:994–997CrossRefGoogle Scholar
  37. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216CrossRefGoogle Scholar
  38. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature CrossRefGoogle Scholar
  39. Mueller B, Seneviratne SI (2012) Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci 109(31):12398–12403. doi:10.1073/pnas.1204330109 CrossRefGoogle Scholar
  40. Orth R, Seneviratne SI (2012) Analysis of soil moisture memory from observations in Europe. J. Geophys. Res. - Atmospheres, 117: D15115, doi:10.1029/2011JD017366
  41. Pfister C (1984) Das Klima der Schweiz von 1525 bis 1860 und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft. 2 vols. Paul Haupt. Bern. pp. 184Google Scholar
  42. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Haupt. Bern. pp. 304Google Scholar
  43. Pfister C, Brázdil R (1999) Climatic variability in Sixteenth-Century Europe and its social dimension. Clim Chang 43(1):789–792Google Scholar
  44. Pfister C, Weingartner R, Luterbacher J (2006) Hydrological winter droughts over the last 450 years in the upper rhine basin: A methodological approach. Hydrol Sci Spec Issue Hist Hydrol 51(5):966–985Google Scholar
  45. Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25:1483–1494CrossRefGoogle Scholar
  46. ProClim. Forum for Climate and Global Change. (2005) Hitzesommer 2003. Synthesebericht Druckzentrum Vögeli AG. BernGoogle Scholar
  47. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European predictability from wet and dry southern winters and springs. Nat Clim Chang 2:736–741. doi:10.1038/NCLIMATE1536 CrossRefGoogle Scholar
  48. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev 4:33–45CrossRefGoogle Scholar
  49. Schweingruber FH, Bartholin T, Schaur E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the alps (Switzerland). Boreas 17:559–566CrossRefGoogle Scholar
  50. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  51. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  52. Seneviratne SI, Nicholls D, Easterling CM, Goodess S, Kanae J, Kossin Y, Luo J, Marengo K, McInnes M, Rahimi M, Reichstein A, Sorteberg, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field CB, V Barros, TF Stocker, D Qin, DJ Dokken, KL Ebi, MD Mastrandrea, KJ Mach, GK Plattner, SK Allen, M Tignor and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, 109–230Google Scholar
  53. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi:10.1038/nature11575 CrossRefGoogle Scholar
  54. Stefanon M, D’Andrea F, Drobinski P (2012) Heatwave classification over Europe and the mediterranean region. Environ Res Lett 7:1–9CrossRefGoogle Scholar
  55. Tallaksen LM, van Lanen HAJ (2004) Hydrological Drought. Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Science vol. 48. Elsevier, AmsterdamGoogle Scholar
  56. Tingley M, Martin P, Craigmile PF, Haran M, Li B, Mannshardt-Shamseldin E, Rajaratnam B (2012) Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat Sci Rev 35:1–22CrossRefGoogle Scholar
  57. Trenberth KE, Fasullo J, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–323CrossRefGoogle Scholar
  58. Trigo RM, Pereira JMC, Pereira MG, Mota B, Calado T, Dacamara CC, Santo FE (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int J Climatol 26(13):1741–1757CrossRefGoogle Scholar
  59. Vautard R, Yiou P, D’Andrea FD, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Summertime European heat and drought waves induced by wintertime mediterranean rainfall deficit. Geophys Res Lett 34, L07711Google Scholar
  60. Verdú FA, Salas JA, Vega-García C (2012) A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. International Journal of Wildland Fire 2012:A-L, http://dx.doi.org/10.1071/WF11100
  61. Vinnikov KY, Yeserkepova IB (1991) Soil moisture: empirical data and model results. J Clim 4:66–79CrossRefGoogle Scholar
  62. Wetter O, Pfister C (2013) An underestimated record breaking event – why summer 1540 was likely warmer than 2003. Clim Past 9:41–56CrossRefGoogle Scholar
  63. Wetter O, Pfister C, Weingartner R, Luterbacher J, Reist T, Trösch J (2011) The largest floods in the high Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol Sci J 56(5):733–758CrossRefGoogle Scholar
  64. Zampieri M, D’Andrea F, Vautard R, Ciais P, De Noblet-Ducoudré N, Yiou P (2009) Hot European summers and the role of soil moisture in the propagation of mediterranean drought. J Clim 22:4747–4758CrossRefGoogle Scholar
  65. Zwierlein C (2011) Der gezähmte Prometheus. Feuer und Sicherheit zwischen Früher Neuzeit und Moderne Vandenhoeck & Ruprecht. Göttingen. pp. 433Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Oliver Wetter
    • 1
    • 2
  • Christian Pfister
    • 1
  • Johannes P. Werner
    • 3
  • Eduardo Zorita
    • 4
  • Sebastian Wagner
    • 4
  • Sonia I. Seneviratne
    • 5
  • Jürgen Herget
    • 6
  • Uwe Grünewald
    • 7
  • Jürg Luterbacher
    • 3
  • Maria-Joao Alcoforado
    • 8
  • Mariano Barriendos
    • 9
    • 10
  • Ursula Bieber
    • 11
  • Rudolf Brázdil
    • 12
    • 13
  • Karl H. Burmeister
    • 14
  • Chantal Camenisch
    • 1
    • 2
  • Antonio Contino
    • 15
  • Petr Dobrovolný
    • 12
    • 13
  • Rüdiger Glaser
    • 16
  • Iso Himmelsbach
    • 16
  • Andrea Kiss
    • 17
  • Oldřich Kotyza
    • 18
  • Thomas Labbé
    • 19
  • Danuta Limanówka
    • 20
  • Laurent Litzenburger
    • 21
  • Øyvind Nordl
    • 22
  • Kathleen Pribyl
    • 23
  • Dag Retsö
    • 24
  • Dirk Riemann
    • 16
  • Christian Rohr
    • 1
    • 2
  • Werner Siegfried
    • 25
  • Johan Söderberg
    • 24
  • Jean-Laurent Spring
    • 26
  1. 1.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Institute of History, Section of Economic, Social and Environmental History (WSU)University of BernBernSwitzerland
  3. 3.Department of Geography; Climatology, Climate Dynamics and Climate ChangeJustus Liebig University of GiessenGiessenSwitzerland
  4. 4.Institute of Coastal ResearchHelmholtz Centre GeesthachtGeesthachtGermany
  5. 5.Institute for Atmospheric and Climate ScienceETH Zurich, CHN N11ZurichSwitzerland
  6. 6.Department of GeographyRheinische Friedrich Wilhelms UniversityBonnGermany
  7. 7.Chair Hydrology and Water Resources Management, Faculty of Environmental Sciences and Process EngineeringBrandenburg University of Technology Cottbus – SenftenbergCottbusSwitzerland
  8. 8.Centre of Geographical Studies, Institute of Geography and PlanningUniversity of Lisbon, Edifício da Fac. de LetrasLisboaPortugal
  9. 9.Catalan Institute for Climate Sciences (IC3)BarcelonaSpain
  10. 10.Department of Modern HistoryUniversity of BarcelonaBarcelonaSpain
  11. 11.Department of Slavonic Studies and Interdisciplinary Centre of Medieval StudiesUniversity of SalzburgSalzburgAustria
  12. 12.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  13. 13.Global Change Research Centre AS CRBrnoCzech Republic
  14. 14.Hoyerberg, Am Staeuben 18HoyerbergBodolzGermany
  15. 15.Department of Earth and Sea Sciences (DiSTeM)University of PalermoPalermoItaly
  16. 16.Department of Environmental Social Studies and Geography - Physical GeographyAlbert-Ludwigs University Freiburg i.Br.FreiburgGermany
  17. 17.Institute of Hydraulic Engineering and Water Resources ManagementVienna University of TechnologyViennaAustria
  18. 18.Regional MuseumLitoměřiceCzech Republic
  19. 19.Institute of HistoryTechnische Universität (TU) of DarmstadtDarmstadtGermany
  20. 20.Institute of Meteorology and Water Management National Research Institute (IMGW-PIB)Center for Poland’s Climate MonitoringWarsawPoland
  21. 21.Lorraine University Center for Historical Research (CRULH)University of Lorraine, Campus Lettres et Sciences HumainesNancy CedexFrance
  22. 22.Norwegian Meteorological Institute, Research and Development DepartmentDivision for Model and Climate AnalysisBlindernNorway
  23. 23.Climatic Research Unit, School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
  24. 24.Department of Economic HistoryStockholm UniversityStockholmSweden
  25. 25.Agroscope Research Station ACWExtension WineWädenswilSwitzerland
  26. 26.Station de recherche Agroscope à PullyPullySwitzerland

Personalised recommendations