Climatic Change

, Volume 125, Issue 2, pp 253–264 | Cite as

Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis

  • Jiří Mikšovský
  • Rudolf Brázdil
  • Petr Štĕpánek
  • Pavel Zahradníček
  • Petr Pišoft
Article

Abstract

Among the key problems associated with the study of climate variability and its evolution are identification of the factors responsible for observed changes and quantification of their effects. Here, correlation and regression analysis are employed to detect the imprints of selected natural forcings (solar and volcanic activity) and anthropogenic influences (amounts of greenhouse gases—GHGs—and atmospheric aerosols), as well as prominent climatic oscillations (Southern Oscillation—SO, North Atlantic Oscillation—NAO, Atlantic Multidecadal Oscillation—AMO) in the Czech annual and monthly temperature and precipitation series for the 1866–2010 period. We show that the long-term evolution of Czech temperature change is dominated by the influence of an increasing concentration of anthropogenic GHGs (explaining most of the observed warming), combined with substantially lower, and generally statistically insignificant, contributions from the sulphate aerosols (mild cooling) and variations in solar activity (mild warming), but with no distinct imprint from major volcanic eruptions. A significant portion of the observed short-term temperature variability can be linked to the influence of NAO. The contributions from SO and AMO are substantially weaker in magnitude. Aside from NAO, no major influence from the explanatory variables was found in the precipitation series. Nonlinear forms of regression were used to test for nonlinear interactions between the predictors and temperature/precipitation; the nonlinearities disclosed were, however, very weak, or not detectable at all. In addition to the outcomes of the attribution analysis for the Czech series, results for European and global land temperatures are also shown and discussed.

Supplementary material

10584_2014_1147_MOESM1_ESM.pdf (2 mb)
ESM 1(PDF 2.02 MB)

References

  1. Brázdil R, Bíl M (1998) Jev El Niño-Jižní Oscilace a jeho možné projevy v polích tlaku vzduchu, teploty vzduchu a srážek v Evropĕ ve 20. století. Geografie 103(2):65–87Google Scholar
  2. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29(2):223–242CrossRefGoogle Scholar
  3. Brázdil R, Bĕlínová M, Dobrovolný P et al (2012a) Temperature and precipitation fluctuations in the Czech Lands during the instrumental period. Masaryk University, BrnoGoogle Scholar
  4. Brázdil R, Zahradníček P, Pišoft P et al (2012b) Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor Appl Climatol 110(1–2):17–34CrossRefGoogle Scholar
  5. Brönnimann S, Xoplaki E, Casty C et al (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28(2–3):181–197Google Scholar
  6. Canty T, Mascioli NR, Smarte MD, Salawitch RJ (2013) An empirical model of global climate – Part 1: a critical evaluation of volcanic cooling. Atmos Chem Phys 13:3997–4031CrossRefGoogle Scholar
  7. Crowley TJ, Unterman MB (2013) Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst Sci Data 5:187–197CrossRefGoogle Scholar
  8. Crowley TJ, Zielinski G, Vinther B et al (2008) Volcanism and the Little Ice Age. PAGES News 16(2):22–23Google Scholar
  9. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geoph Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  10. Haykin S (1999) Neural networks: a comprehensive foundation (2nd ed). Prentice Hall, Upper Saddle RiverGoogle Scholar
  11. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  12. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433–1450CrossRefGoogle Scholar
  13. Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8(1):014003CrossRefGoogle Scholar
  14. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38(1):L01706CrossRefGoogle Scholar
  15. Meinshausen M, Smith S, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241CrossRefGoogle Scholar
  16. Mikšovský J, Pišoft P, Raidl A (2008) Global patterns of nonlinearity in real and GCM-simulated atmospheric data. Lect Notes Earth Sci 112:17–34CrossRefGoogle Scholar
  17. Muller RA, Curry J, Groom D et al (2013) Decadal variations in the global atmospheric land temperatures. J Geophys Res Atmos 118(11):5280–5286CrossRefGoogle Scholar
  18. Pasini A, Lore M, Ameli F (2006) Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecol Model 191(1):58–67CrossRefGoogle Scholar
  19. Písek J, Brázdil R (2006) Responses of large volcanic eruptions in the instrumental and documentary climatic data over central Europe. Int J Climatol 26(4):439–459CrossRefGoogle Scholar
  20. Rohde R, Muller RA, Jacobsen R et al (2013) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor Geostat An Overview 1:1Google Scholar
  21. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115(9):2161–2165CrossRefGoogle Scholar
  22. Schmidt GA, Jungclaus JH, Ammann CM et al (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci Model Dev 5:185–191CrossRefGoogle Scholar
  23. Schönwiese CD, Walter A, Brinckmann S (2010) Statistical assessments of anthropogenic and natural global climate forcing. An update. Meteorol Z 19(1):3–10CrossRefGoogle Scholar
  24. Skeie RB, Berntsen TK, Myhre G et al (2011) Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos Chem Phys 11(22):11827–11857CrossRefGoogle Scholar
  25. Smith SJ, van Aardenne J, Klimont Z et al (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11(3):1101–1116CrossRefGoogle Scholar
  26. Staeger T, Grieser J, Schönwiese CD (2003) Statistical separation of observed global and European climate data into natural and anthropogenic signals. Clim Res 24(1):3–13CrossRefGoogle Scholar
  27. Stocker TF, Qin D, Plattner GK et al (eds) (2013) Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  28. Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112:326–332CrossRefGoogle Scholar
  29. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geoph Res Lett 33:L12704CrossRefGoogle Scholar
  30. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20(1):9–17CrossRefGoogle Scholar
  31. Tsonis AA, Elsner JB, Hunt AG, Jagger TH (2005) Unfolding the relation between global temperature and ENSO. Geoph Res Lett 32(9):L09701CrossRefGoogle Scholar
  32. Walter A, Schönwiese CD (2002) Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorol Z 11(5):335–343CrossRefGoogle Scholar
  33. Walter A, Denhard M, Schönwiese CD (1998) Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorol Z 7(4):171–180Google Scholar
  34. Wang YM, Lean JL, Sheeley NR (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522–538CrossRefGoogle Scholar
  35. Zhou J, Tung KK (2013) Deducing multidecadal anthropogenic global warming trends using multiple regression analysis. J Atmos Sci 70:3–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jiří Mikšovský
    • 1
  • Rudolf Brázdil
    • 2
    • 3
  • Petr Štĕpánek
    • 3
    • 4
  • Pavel Zahradníček
    • 3
    • 4
  • Petr Pišoft
    • 1
  1. 1.Department of Meteorology and Environment Protection, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  3. 3.Global Change Research Centre AS CRBrnoCzech Republic
  4. 4.Regional Office BrnoCzech Hydrometeorological InstituteBrnoCzech Republic

Personalised recommendations