Climatic Change

, Volume 125, Issue 1, pp 39–51 | Cite as

Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections

  • Filippo Giorgi
  • Erika Coppola
  • Francesca Raffaele
  • Gulilat Tefera Diro
  • Ramon Fuentes-Franco
  • Graziano Giuliani
  • Ashu Mamgain
  • Marta Pereira Llopart
  • Laura Mariotti
  • Csaba Torma
Article

Abstract

We analyze changes of four extreme hydroclimatic indices in the RCP8.5 projections of the Phase I CREMA experiment, which includes 21st century projections over 5 CORDEX domains (Africa, Central America, South America, South Asia, Mediterranean) with the ICTP regional model RegCM4 driven by three CMIP5 global models. The indices are: Heat Wave Day Index (HWD), Maximum Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile (R95) and Hydroclimatic Intensity index (HY-INT). Comparison with coarse (GPCP) and high (TRMM) resolution daily precipitation data for the present day conditions shows that the precipitation intensity distributions from the GCMs are close to the GPCP data, while the RegCM4 ones are closer to TRMM, illustrating the added value of the increased resolution of the regional model. All global and regional model simulations project predominant increases in HWD, CDD, R95 and HY-INT, implying a regime shift towards more intense, less frequent rain events and increasing risk of heat wave, drought and flood with global warming. However, the magnitudes of the changes are generally larger in the global than the regional models, likely because of the relatively low “climate sensitivity” of the RegCM4, especially when using the CLM land surface scheme. In addition, pronounced regional differences in the change signals are found. The data from these simulations are available for use in impact assessment studies.

Supplementary material

10584_2014_1117_MOESM1_ESM.pdf (21 kb)
Table S1(PDF 20 kb)
10584_2014_1117_MOESM2_ESM.pdf (22 kb)
Table S2(PDF 22 kb)
10584_2014_1117_MOESM3_ESM.pdf (21 kb)
Table S3(PDF 20 kb)
10584_2014_1117_MOESM4_ESM.pdf (22 kb)
Table S4(PDF 22 kb)
10584_2014_1117_MOESM5_ESM.pdf (671 kb)
Figure S1(PDF 670 kb)
10584_2014_1117_MOESM6_ESM.pdf (1.5 mb)
Figure S2(PDF 1516 kb)
10584_2014_1117_MOESM7_ESM.pdf (1.8 mb)
Figure S3(PDF 1815 kb)

References

  1. Ballester J, Giorgi F, Rodo X (2010a) Changes in European temperature extremes can be predicted from changes in PDF central statistics. Clim Chang Lett 98:277–284CrossRefGoogle Scholar
  2. Ballester J, Rodo X, Giorgi F (2010b) Future changes in central Europe heat waves to mostly follow summer mean warming. Clim Dyn 35:1191–1205CrossRefGoogle Scholar
  3. Beniston M et al (2007) Future extreme events in European climate: an exploration ofregional climate model projections. Clim Chang 81:71–95CrossRefGoogle Scholar
  4. Coppola E et al. (2014) Present and future climatologies in the Phase I CREMA experiment. Climatic change, this issueGoogle Scholar
  5. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere—atmosphere transfer scheme, BATS: version 1E as coupled to the NCAR Community Climate Model. Technical Note NCAR/TN—387 + STR, 72pGoogle Scholar
  6. Donat MG et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res—Atmos 118:20998–22118Google Scholar
  7. Emanuel KA, Rothman MZ (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1756–1782CrossRefGoogle Scholar
  8. Giorgi F (1991) Sensitivity of summertime precipitation over the western United States to model physics parameterizations. Mon Weather Rev 119:2870–2888CrossRefGoogle Scholar
  9. Giorgi F (2014) The Phase I CORDEX RegCM hyper-Matrix (CREMA) experiment. Introduction to the special issue. Climatic Change, this issueGoogle Scholar
  10. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352CrossRefGoogle Scholar
  11. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 175–183Google Scholar
  12. Giorgi F et al (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324CrossRefGoogle Scholar
  13. Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  14. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  15. Huffman GJ et al (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50CrossRefGoogle Scholar
  16. Huffman GJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  17. IPCC (2012) In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 582Google Scholar
  18. Kjellstrom E et al (2007) Modeling daily temperature extremes: recent climate and future changes over Europe. Clim Chang 81:249–265CrossRefGoogle Scholar
  19. Lenderink G (2010) Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim Res 44:151–166CrossRefGoogle Scholar
  20. Meehl GA et al (2007) In: Solomon S (ed) Global climate projections, chapter 10 of climate change 2007, The physical science basis, WGI contribution to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, New York, pp 747–845Google Scholar
  21. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  22. Nikulin G et al (2012) Precipitation climatology in an ensemble of CORDEX Africa regional climate simulations. J Clim 25:6057–6078CrossRefGoogle Scholar
  23. Oleson K et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113, G01021. doi:10.1029/2007JG000563 Google Scholar
  24. Pal JS et al (2007) The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  25. Seneviratne SI et al (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  26. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extreme indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res—Atmos 118:2473–2493Google Scholar
  27. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 78:485–498CrossRefGoogle Scholar
  28. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang 79:185–211CrossRefGoogle Scholar
  29. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang 42:327–339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Filippo Giorgi
    • 1
  • Erika Coppola
    • 1
  • Francesca Raffaele
    • 1
  • Gulilat Tefera Diro
    • 1
  • Ramon Fuentes-Franco
    • 2
  • Graziano Giuliani
    • 1
  • Ashu Mamgain
    • 3
  • Marta Pereira Llopart
    • 4
  • Laura Mariotti
    • 1
  • Csaba Torma
    • 1
  1. 1.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Center for Scientific Research and Higher Education (CICESE)EnsenadaMexico
  3. 3.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia
  4. 4.Department of Atmospheric SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations